Projective Bivector Parametrization of Isometries Part III: Clifford's Perspective

Danail S. Brezov ${ }^{\dagger}$

${ }^{\dagger}$ Department of Mathematics, UACEG

International Summer School on Hyprcomplex Numbers, Lie Algebras and Their Applications, Varna, June 09-12, 2017

Return of the Jedi ...

W. Clifford [1876]

J. Plücker [1860's]

H. Lorentz [1902]

Recommended Readings

囯 Brezov D．，Higher－Dimensional Representations of $S L_{2}$ and its Real Forms via Plücker Embedding，Adv．Appl．Clifford Algebras（2017）．

Rei Brezov D．，Mladenova C．and Mladenov I．，Wigner Rotation and Thomas Precession：Geometric Phases and Related Physical Theories，Journal of the Korean Physical Society 66 （2015）．

围 Kuvshinov V．，Tho N．，Local Vector Parameters of Groups，The Cartan Form and Applications to Gauge and Chiral Field Theory， Physics of Elementary Particles and the Nucleus 25 （1994）．

R R．Ward and R．Wells，Twistor Geometry and Field Theory， Cambridge University Press，Cambridge 1990.

目 A．Bogush and F．Fedorov，On Plane Orthogonal Transformations （in Russian），Reports AS USSR 206 （1972）1033－1036．

囯 Fedorov F．，The Lorentz Group（in Russian），Science，Moscow 1979.

Projective Bivectors

Why is c not a vector?

- it comes from the bivector part of the quaternion
- it may be infinite (e.g. in the case of half-turns)

The proper term would thus be "projective bivector" and one has formally

$$
\mathbf{c}=\frac{\langle\zeta\rangle_{2}}{\langle\zeta\rangle_{0}}, \quad \zeta \in \mathcal{C} \ell_{0,3}^{\circ} /\{0\} \cong \mathbb{H}^{*}
$$

where $\langle\cdot\rangle_{k}$ denotes grade projection. As for the composition law, one has

$$
\mathbf{c}_{m} \ldots \mathbf{c}_{2} \mathbf{c}_{1}=\frac{\left\langle\zeta_{k} \ldots \zeta_{2} \zeta_{1}\right\rangle_{2}}{\left\langle\zeta_{k} \ldots \zeta_{2} \zeta_{1}\right\rangle_{0}}
$$

How Far Can We Go?

In direct analogy with the case $n=3$ one may define

$$
\mathbf{c}=\langle\zeta\rangle_{0}^{-1} \sum_{k=1}^{\left[\frac{n}{2}\right]}\langle\zeta\rangle_{2 k}, \quad \zeta \in \mathcal{C} \ell_{p, q}^{\circ} /\{0\}, \quad p+q=n
$$

with $p+q=n$. Furthermore, we still have the composition law

$$
\mathbf{c}_{m} \ldots \mathbf{c}_{2} \mathbf{c}_{1}=\left\langle\zeta_{m} \ldots \zeta_{2} \zeta_{1}\right\rangle_{0}^{-1} \sum_{k=1}^{\left[\frac{n}{2}\right]}\left\langle\zeta_{m} \ldots \zeta_{2} \zeta_{1}\right\rangle_{2 k}
$$

and the Cayley transform maps this to the usual matrix representation

$$
\text { Cay : } \mathrm{PC}_{p, q}^{\circ} \longrightarrow \mathrm{SO}(p, q) .
$$

However, along the way we lost both homogeneity and decomposability...

The Plücker Embedding

Defining k-blades in $C_{n}(\mathbb{C})$ as decomposable elements

$$
\theta \in \mathcal{B}_{k}^{n} \Longleftrightarrow \theta=\mathbf{u}_{1} \wedge \mathbf{u}_{2} \wedge \cdots \wedge \mathbf{u}_{k}, \quad \mathbf{u}_{j} \in \mathbb{C}^{n}
$$

one may construct the Plücker embedding as

$$
\mathrm{G}_{k}^{n} \cong \mathcal{B}_{k}^{n} / \mathbb{C}^{*} \quad \xrightarrow{\mathrm{pl}} \quad \mathrm{P} \bigwedge^{k}\left(\mathbb{C}^{n}\right), \quad \mathbb{C}^{*} \cong \mathbb{C} /\{0\} .
$$

In the particular case of bivectors it reduces to the intersection of quadrics

$$
\theta \wedge \theta=0 \quad \rightarrow \quad \theta^{[i j} \theta^{k] I}=0
$$

that yields the embedding of planar (pseudo-)rotations in $\mathrm{SO}(p, q)$, i.e.,

$$
\theta_{i} \wedge \theta_{j}=0 \quad \longrightarrow \quad \mathrm{SO}_{3} \subset \mathrm{SO}_{n}
$$

Twistorial Approach

We use double fibrations known from AG and twistors

$$
\mathrm{G}_{1}^{n} \stackrel{\mu}{\leftarrow} \mathcal{F}_{1,2}^{n} \xrightarrow{\nu} \mathrm{G}_{2}^{n}, \quad \mathrm{G}_{3}^{n} \stackrel{\mu^{*}}{\longleftrightarrow} \mathcal{F}_{2,3}^{n} \xrightarrow{\nu^{*}} \mathrm{G}_{2}^{n}
$$

to describe the inclusion $\mathfrak{s l}_{2} \subset \mathfrak{s o}_{n}$ via incidence relations, e.g. in \mathbb{C}^{4}

$$
\mathcal{P}_{\alpha} \xrightarrow{\rho^{-1}} \ell \xrightarrow{\perp} V_{\beta} \xrightarrow{\rho_{*}} \mathcal{P}_{\beta} .
$$

Having determined the invariant direction (in matrix terms) as

$$
\ell=\Sigma_{1} \cap \Sigma_{2}, \quad \Sigma_{1,2}=\left\{\operatorname{ker} \Theta_{1,2}\right\}=\left\{\Theta_{1,2}\right\}^{\perp}
$$

one may use the commutator and Killing form to write

$$
\left\langle\Theta_{2}, \Theta_{1}\right\rangle=\frac{\Theta_{1}+\Theta_{2}+\left[\Theta_{2}, \Theta_{1}\right]}{1-\left(\Theta_{1}, \Theta_{2}\right)}
$$

One Example

Consider the decomposable $\mathrm{SO}^{+}(4,1)$ element

$$
\Theta=\left(\begin{array}{rrrrr}
0 & -1 & -1 & -1 & 0 \\
1 & 0 & -1 & -2 & 1 \\
1 & 1 & 0 & -1 & 1 \\
1 & 2 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right) \xrightarrow{\text { Cay }} \Lambda=\frac{1}{7}\left(\begin{array}{rrrrr}
1 & -8 & -2 & 4 & -6 \\
-4 & -3 & -6 & -2 & -4 \\
2 & -2 & 3 & -6 & 2 \\
8 & 6 & -2 & -3 & 8 \\
6 & 8 & 2 & -4 & 13
\end{array}\right)
$$

and choose the plane $\left\{\theta^{\prime}\right\}=\left\{(1,1,0,-1,1)^{t},(0,2,1,2,0)^{t}\right\}$ and define

$$
\ell=\left\{(1,0,0,0,-1)^{t},(2,-1,0,1,0)^{t}\right\} \perp\left\{\theta, \theta^{\prime}\right\} .
$$

Choosing a basis in the form

$$
\mathbf{a}_{1}=\mathbf{e}_{3}, \quad \mathbf{a}_{2}=\mathbf{e}_{2}+\mathbf{e}_{4}, \quad \mathbf{a}_{3}=\mathbf{e}_{1}+2 \mathbf{e}_{2}+\mathbf{e}_{5}
$$

in $V_{\beta}=\ell^{\perp}$ we perform Bryan decomposition with scalar parameters

$$
\tau_{1}^{ \pm}=\frac{4}{9 \pm \sqrt{33}}, \quad \tau_{2}^{ \pm}=\frac{2}{-7 \pm \sqrt{33}}, \quad \tau_{1}^{ \pm}=\frac{2}{3 \mp \sqrt{33}}
$$

The Proper Lorentz Group $\mathrm{SO}^{+}(3,1)$

Consider the isomorphism

$$
C C_{0,3} \cong C C_{1,3}^{\circ} \cong \mathbb{H}^{\mathbb{C}}
$$

that yields on the Lie group level

$$
\mathrm{SO}^{+}(3,1) \cong \mathrm{SO}(3, \mathbb{C})
$$

and we have the matrix realization (Fedorov)
$\Lambda(\mathbf{c})=\frac{1}{\left|1+\mathbf{c}^{2}\right|}\left(\begin{array}{cc}1-|\mathbf{c}|^{2}+\mathbf{c} \overline{\mathbf{c}}^{t}+\overline{\mathbf{c}} \mathbf{c}^{t}+(\mathbf{c}+\overline{\mathbf{c}})^{\times} & \mathrm{i}(\overline{\mathbf{c}}-\mathbf{c}+\overline{\mathbf{c}} \times \mathbf{c}) \\ \mathrm{i}(\overline{\mathbf{c}}-\mathbf{c}-\overline{\mathbf{c}} \times \mathbf{c})^{t} & 1+|\mathbf{c}|^{2}\end{array}\right)$
where $\mathbf{c}=\boldsymbol{\alpha}+\mathrm{i} \boldsymbol{\beta} \in \mathbb{C P}^{3}$ is the complex vector parameter. Denoting $\tilde{\Lambda}=\Lambda-\tilde{\eta} \Lambda^{t} \tilde{\eta}$, where $\tilde{\eta}=\operatorname{diag}(1,1,1,-1)$, we derive its components as

$$
\boldsymbol{\alpha}=\frac{1}{\operatorname{tr} \Lambda}\left(\tilde{\Lambda}_{32}, \tilde{\Lambda}_{13}, \tilde{\Lambda}_{21}\right)^{t}, \quad \boldsymbol{\beta}=\frac{1}{\operatorname{tr} \Lambda}\left(\tilde{\Lambda}_{14}, \tilde{\Lambda}_{24}, \tilde{\Lambda}_{34}\right)^{t} .
$$

Wigner Rotation and Thomas Precession

The Wigner angle in 3D relativity is defined as

$$
\theta=2 \arg \left(1+\bar{z}_{1} z_{2}\right)
$$

where $z_{k} \in \mathbb{C}$ are the stereographic projections of the two boosts' vector-parameters. On the infinitesimal level (in the Thomas frame)

$$
\mathrm{d} \tau_{\theta}=-\Im \frac{\bar{z} \mathrm{~d} z}{1-|z|^{2}}
$$

Adding the Euclidean case (Foucault's pendulum) Stoke's theorem yields

$$
\omega_{h}=-\Im \frac{\mathrm{d} \bar{z} \wedge \mathrm{~d} z}{\left(1-|z|^{2}\right)^{2}}, \quad \omega_{e}=\Im \frac{\mathrm{d} \bar{z} \wedge \mathrm{~d} z}{\left(1+|z|^{2}\right)^{2}}
$$

given by the Fubini-Study construction for the Hopf bundles

$$
\mathbb{S}^{1} \rightarrow \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}, \quad \mathbb{S}^{1} \rightarrow \mathrm{AdS}_{3} \rightarrow \mathbb{D}
$$

Electrodynamics and Beyond

We extend the complex representation of the EM field to

$$
\mathbf{c}=\boldsymbol{\alpha}+\mathrm{i} \boldsymbol{\beta} \in \mathbb{C P}^{3} .
$$

In $\mathbb{R}^{3,1}$ boosts are represented by imaginary bivectors $\mathbf{c}=\mathrm{i} \boldsymbol{\beta}, \boldsymbol{\beta} \in \mathbb{B}^{3}$ that may be mapped to $\zeta \in \mathbb{H}$ leading to the expression for the EM induction

$$
\Re\left\langle\mathrm{i} \boldsymbol{\beta}_{2}, \mathrm{i} \boldsymbol{\beta}_{1}\right\rangle=\frac{\boldsymbol{\beta}_{1} \times \boldsymbol{\beta}_{2}}{1+\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right)} \quad \rightarrow \quad \mathcal{A}=\Im \frac{\overline{\boldsymbol{\zeta}} \mathrm{d} \boldsymbol{\zeta}}{1+|\boldsymbol{\zeta}|^{2}}
$$

while in the compact case there is no holonomy as the bundle

$$
\mathrm{SO}(4) \quad \longrightarrow \quad \mathrm{SO}(3), \quad \operatorname{Spin}(4) \cong \operatorname{Spin}(3) \otimes \operatorname{Spin}(3)
$$

is globally trivial. In higher dimensions (if the Plücker relations hold) we use similar technique to express the corresponding geometric phases as

$$
\mathrm{d} \Theta_{W}^{\circ}=\frac{[\Theta, \mathrm{d} \Theta]}{1+\|\Theta\|^{2}}, \quad \mathrm{~d} \tilde{\Theta}_{W}^{\circ}=\frac{[\tilde{\Theta}, \mathrm{d} \tilde{\Theta}]}{1-\|\tilde{\Theta}\|^{2}} .
$$

Invariant Axes and Wigner's Little Groups

The Plücker relations may be written for the vector-parameter as

$$
\Im \mathbf{c}^{2}=0 \quad \Leftrightarrow \quad \alpha \perp \boldsymbol{\beta}
$$

in which case the fixed subspace of $\Lambda(\mathbf{c})$ is spanned by

$$
\boldsymbol{\sigma}_{1}=(\boldsymbol{\alpha}, 0)^{t}, \quad \boldsymbol{\sigma}_{2}=\left(\boldsymbol{\alpha} \times \boldsymbol{\beta}, \boldsymbol{\alpha}^{2}\right)^{t} .
$$

The corresponding Wigner little groups are related to the bundles

$$
\begin{gathered}
\mathbb{B}_{3} \cong \mathrm{SO}^{+}(3,1) / \mathrm{SO}(3), \quad \mathrm{dS}_{3} \cong \mathrm{SO}^{+}(3,1) / \mathrm{SO}(2,1) \\
\mathcal{L}\left(\mathbb{R}^{3,1}\right) \cong \mathrm{SO}^{+}(3,1) / \mathrm{E}(2)
\end{gathered}
$$

used describe elementary particles (bradyons, tachyons and luxons).

Alternative Parameterizations

Consider the vector-parameter

$$
\mathbf{c}=(3+2 \mathrm{i}, 3 \mathrm{i}-2,2+\mathrm{i})^{t}
$$

and determine the two characteristic directions

$$
\mathbf{c}_{\circ}=(1, \mathrm{i}, 0)^{t} \in \operatorname{ker}\left(\mathbf{c}^{\times} \pm \mathrm{i} \sqrt{\mathbf{c}^{2}}\right), \quad \boldsymbol{\kappa}=(0,0,1)^{t}=\left|\boldsymbol{\alpha}_{\circ}\right|^{-2} \boldsymbol{\alpha}_{\circ} \times \boldsymbol{\beta}_{\circ}
$$

that allow for a factorization

$$
\begin{aligned}
& \mathbf{c}=\left\langle(1-3 \mathrm{i} / 2) \mathbf{c}_{\circ}, \mathrm{i}(3 \mp 2 \sqrt{2}) \boldsymbol{\kappa},(1 \pm \sqrt{2}) \boldsymbol{\kappa}\right\rangle \\
& \mathbf{c}=\left\langle(1 \pm \sqrt{2}) \boldsymbol{\kappa}, \mathrm{i}(3 \mp 2 \sqrt{2}) \boldsymbol{\kappa},(1 / 4+5 \mathrm{i} / 4) \mathbf{c}_{\circ}\right\rangle .
\end{aligned}
$$

One may also decompose into mutually commuting boosts and rotations

$$
\Lambda=\Lambda_{3} \mathcal{R}_{3} \Lambda_{2} \mathcal{R}_{2} \Lambda_{1} \mathcal{R}_{1}=\mathcal{R}_{2} \Lambda_{2} \mathcal{R}_{2} \Lambda_{2} \mathcal{R}_{1} \Lambda_{1} .
$$

The Dual Extension

We consider a central extension to a given algebra

$$
x \rightarrow \underline{x}=x+\varepsilon t, \quad \varepsilon^{2}=0
$$

that clearly yields for analytic functions

$$
f(x+\varepsilon t)=f(x)+\varepsilon f^{\prime}(x) t .
$$

In particular, one may have dual quaternion or axis-angle variables

$$
\underline{\mathbf{n}}=\mathbf{n}+\varepsilon \mathbf{m}, \quad \underline{\varphi}=\varphi+\varepsilon \psi
$$

that leads to the dual Rodrigues' vector

$$
\underline{\mathbf{c}}=\left(\tau+\left(1+\tau^{2}\right) \frac{\psi}{2} \varepsilon\right) \underline{\mathbf{n}} .
$$

Recommended Readings

Chub V., On the Possibility of Application of One System of Hypercomplex Numbers in Inertial Navigation, Mech. Solids 37 (2002).

雷 Condurache D. and Burlacu A., Dual Tensor Based Solutions for Rigid Body Motion Parameterization, Mehcanisms and Machine Theory 74 (2014).

國 Wittenburg J., Kinematics: Theory and Applications, Springer Verlag Berlin Heidelberg 2016

Dimentberg, F. The Screw Calculus and Its Applications in Mechanics, Foreign Technology Division (1965).

Homework:

What should be done now?

- Tell your friends about what you've learned!
- Tell them to tell their friends!
- Do some research and see how easy it is!
- Don't forget to cite our papers!

Thank You!

THANKS FOR YOUR PATIENCE!

