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The Cross Product

Consider the Hodge star operator de�ned in Cli�ord basis as

? : e1 ∧ e2 ∧ . . . ek → ek+1 ∧ ek+2 ∧ . . . en

and use it to construct the Cross product in R3:

u× v = ? (u ∧ v)

that clearly yields a map α : R3 → End(R3) in the form

α : u → û =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 ∈ End(R3).
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Kinematical Context

In rigid body one has the constraint d
dt r

2 = 0 and thus

ṙ = ω̂ r, ω̂ = ṘRt ∈ so(3)

In the simple case ω = const., the solution has the form

r(t) = etω̂r0 =
∞∑
k=0

tk

k!
ω̂kr0, r0 = r(0)

Similarly, one has Euler's dynamical equations

L̇ = −ω̂ L + M, L = Iω.
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Iterations

Homogeneity allows for a restriction to the unit sphere

R3 3 x = λξ, ξ ∈ S2, λ = ||x|| ∈ R+

and thus expressing (for n ≥ 0)

ξ̂n+2 = −ξ̂n, ξ̂0 = I

where we use the standard notation for the projectors

P‖ξ = ξξt , P⊥ξ = I − P‖ξ .

It is not hard to show by induction that

ξ̂2k+1 . . . ξ̂2ξ̂1 = (−1)kg2k+1[2k . . . g3[2ξ1]]... ]

where we denote gij = ξ̂i · ξ̂j and a[ibj] = aibj − ajbi .
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Algebraic Construction

Consider the hypercomplex number system

Ω : {p, q, r} ←→ {P‖ξ , P
⊥
ξ , ξ̂}

de�ned by the multiplications

p2 = p, p q = p r = 0, qr = r , q2 = −r2 = q

that clearly indicate the isomorphism Ω ∼= R⊕ C. Hence, one has

ϕ = ϕ0p + ϕ1q + ϕ2r −→ {ϕ0, ϕ1+ iϕ2} ∈ R⊕ C

and Ω inherits its properties from the real and complex algebra.
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Cylindrical Representation

Consider the projections

〈ϕ〉0 = p ϕ, 〈ϕ〉⊥ = qϕ

allowing us to consider separate norms in Ω0 and Ω⊥. Then

ϕ1 + iϕ2 = ρ eiϑ, ρ = ||ϕ||⊥, ϑ = arg〈ϕ〉⊥ = atan2
ϕ2

ϕ1

and hence, the famous Moivre's formula

ϕn = ϕn
0 p + ρn [cos (nϑ)q + sin (nϑ)r ] = ϕn

0 p + ρn〈enϑr 〉⊥

as well as the formula for the n-th root

( n
√
ϕ)jk = ( n

√
ϕ0)j p + ρ

1
n

(
cos

ϑ+2kπ

n
q + sin

ϑ+2kπ

n
r

)
.
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Analyticity and Invertibility

The expansion End(Ω) 3 f (ϕ) = f0 p + f1 q + f2 r can be written also as

{ϕ0, z}
f−→ {f0(ϕ0), h(z)}, h(z) = f1(z) + if2(z)

Then, f is analytic in Ω i� f0, h are analytic respectively in R and C.

ϕ → ϕ =

 ϕ0 0 0
0 ϕ1 −ϕ2

0 ϕ2 ϕ1


in a suitable basis and

||ϕ|| = | detϕ| = ||ϕ||0||ϕ||2⊥ = |ϕ0| (ϕ2
1 + ϕ2

2)

so ∃ϕ−1 ⇔ ||ϕ|| 6= 0 and similarly, if f is analytic ∃ f −1 ⇔ ||f ′|| 6= 0.

Danail S. Brezov On Hypercomplex Calculi with Kinematical Origins



byul ogo

Preliminaries Algebrization Complexi�cation Parallel Transport and Holonomy

Some Useful Formulas

Consider the geometric series

∞∑
n=0

ϕn =
p

1−ϕ0
+

(1−ϕ1) q + ϕ2r

(1−ϕ1)2+ ϕ2
2

, ||ϕ||0, ||ϕ||⊥ < 1

as well as the Cayley transform

Cay(ϕ) =
1 + ϕ0

1− ϕ0
p +

(1−||ϕ||2⊥) q + 2ϕ2r

(1−ϕ1)2+ ϕ2
2

and in particular

Cay(λr) = p +
1−λ2

1 + λ2
q +

2λ

1 + λ2
r .

The exponent is a typical example of globally analytic map

expϕ = eϕ0p + eϕ1 (cosϕ2 q + sinϕ2 r) , expϕ expψ = exp(ϕ+ ψ)
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The Proper Lorentz Group

Similarly, we consider C3 → End(C3) and use the isomorphism

SO(3,C) ∼= SO+(3, 1)

to construct the Lorentz equivalent. Note also that

x̂2 = x⊗ x− x2I

and as long as x2 6= 0, one can normalize as

x = λξ

with ξ2 = 1 and λ ∈ C that yields a complexi�cation of Ω.
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Duplex Numbers

For non-isotropic vectors x2 6= 0 it is straightforward to show that

ΩC ∼= C⊕ D, D ∼= C`1(C)

where the bicomplex (duplex) numbers D are generated by {1, i , j , k}
with i2 = j2 = −1, ij = k is shown to be D ∼= C2 via the idempotents

τ± =
1

2
(1± k), τ 2± = τ±, τ+τ− = 0

that yields the decomposition

ψ⊥ = ψ−τ− + ψ+τ+, ψ± = ψ1 ∓ iψ2 ∈ C.

Bicomplex holomorphic functions satisfy

∂̄ψ = ∂∗ψ = ∂̄∗ψ = 0

that may also be written as D(4)ψ = 0, D(2)ψ1,2 = 0.
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The Isotropic Case

In the isotropic case x2 = 0 one has x̂2 = xxt and thus

ΩC
null : {1, `, ε}, `2 = ε, `3 = 0

is isomorphic to the matrix algebra

ΩC
null 3 ψ = ψ0 + ψ1`+ ψ2ε ↔ ψ =

 ψ0 ψ1 ψ2

0 ψ0 ψ1

0 0 ψ0

·
For example, one has the multiplication rule

ϕψ = ϕ0ψ0 + (ψ0ϕ1 + ϕ0ψ1)`+ (ϕ1ψ1 + ψ0ϕ2 + ϕ0ψ2)ε

and Taylor expansion of functions over this algebra yields

f (ψ) = f (ψ0) + f ′(ψ0) [ψ1`+ ψ2 ε] +
1

2
f ′′(ψ0)ψ2

1 ε

for example

expψ = eψ0

[
1 + ψ1`+

(
ψ2 +

ψ2
1

2

)
ε

]
·
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Real Forms

Dual complex numbers are embedded in the even subalgebra

C[ε] ∼= E(2) ⊂ ΩC
null : {1, ε}, ε2 = 0.

The hyperbolic real form Ω ∼= R⊕ C′, where

C′ ∼= C`1,0 ∼= R2 : {1, k}, j2 = 1.

The Cauchy-Riemann analyticity conditions in this case are

∂f1
∂ϕ1

=
∂f2
∂ϕ2

,
∂f1
∂ϕ2

=
∂f2
∂ϕ1

⇔ ∂h

∂z∗
= 0·

One example is the exponential map

exp(ϕ1 + kϕ2) = eϕ1 (coshϕ2 + k sinhϕ2) = eϕ1−ϕ2τ− + eϕ1+ϕ2τ+

where τ± = 1
2 (1± k) yield the retarded and accelerated wave.

The Euclidean real form Ω ∼= R⊕ C has already been discussed.
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Deformations

Consider a smooth �ow t → g(t) on the Ω-bundle over R3 and

ϕ̇ = ϕ̇0p + ϕ̇1q + ϕ̇2r + (ϕ0 − ϕ1)(ṙr + r ṙ) + ϕ2ṙ

using the correspondence

ṙ ←→ ˆ̇ξ, ṗ = −q̇ = ṙr + r ṙ ←→ ξξ̇t + ξ̇ξt .

One may consider the non-commutative term ωf in df ↔ {df0, dh, ωf }

ωf = f01dq + f2dr , f01 = f1 − f0

from the perspective of bundle holonomy and study the geometric phase∮
γ

df =

∮
γ

ωf , f : analytic
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Thank You!

THANKS FOR YOUR PATIENCE!
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