On Hypercomplex Calculi with Kinematical Origins

Danail S. Brezov ${ }^{\dagger}$
${ }^{\dagger}$ Department of Mathematics, UACEG

International Summer School on Hypercomplex Numbers, Lie Algebras and Applications, Varna, June 09-12, 2017

The Cross Product

Consider the Hodge star operator defined in Clifford basis as

$$
\star: \quad \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \ldots \mathbf{e}_{k} \rightarrow \mathbf{e}_{k+1} \wedge \mathbf{e}_{k+2} \wedge \ldots \mathbf{e}_{n}
$$

and use it to construct the Cross product in \mathbb{R}^{3} :

$$
\mathbf{u} \times \mathbf{v}=\star(\mathbf{u} \wedge \mathbf{v})
$$

that clearly yields a map $\alpha: \mathbb{R}^{3} \rightarrow \operatorname{End}\left(\mathbb{R}^{3}\right)$ in the form

$$
\alpha: \quad \mathbf{u} \rightarrow \hat{\mathbf{u}}=\left(\begin{array}{ccc}
0 & -u_{3} & u_{2} \\
u_{3} & 0 & -u_{1} \\
-u_{2} & u_{1} & 0
\end{array}\right) \in \operatorname{End}\left(\mathbb{R}^{3}\right)
$$

Kinematical Context

In rigid body one has the constraint $\frac{d}{d t} \mathbf{r}^{2}=0$ and thus

$$
\dot{\mathbf{r}}=\hat{\boldsymbol{\omega}} \mathbf{r}, \quad \hat{\boldsymbol{\omega}}=\dot{\mathcal{R}} \mathcal{R}^{t} \in \mathfrak{s o}(3)
$$

In the simple case $\omega=$ const., the solution has the form

$$
\mathbf{r}(t)=\mathrm{e}^{t \hat{\omega}} \mathbf{r}_{0}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \hat{\omega}^{k} \mathbf{r}_{0}, \quad \mathbf{r}_{0}=\mathbf{r}(0)
$$

Similarly, one has Euler's dynamical equations

$$
\dot{\mathbf{L}}=-\hat{\omega} \mathbf{L}+\mathbf{M}, \quad \mathbf{L}=\mathbf{I} \boldsymbol{\omega} .
$$

Iterations

Homogeneity allows for a restriction to the unit sphere

$$
\mathbb{R}^{3} \ni \mathbf{x}=\lambda \boldsymbol{\xi}, \quad \boldsymbol{\xi} \in \mathbb{S}^{2}, \quad \lambda=\|\mathbf{x}\| \in \mathbb{R}^{+}
$$

and thus expressing (for $n \geq 0$)

$$
\hat{\boldsymbol{\xi}}^{n+2}=-\hat{\boldsymbol{\xi}}^{n}, \quad \hat{\boldsymbol{\xi}}^{0}=\mathcal{I}
$$

where we use the standard notation for the projectors

$$
\mathcal{P}_{\xi}^{\|}=\xi \xi^{t}, \quad \mathcal{P}_{\xi}^{\perp}=\mathcal{I}-\mathcal{P}_{\xi}^{\|} .
$$

It is not hard to show by induction that

$$
\hat{\xi}_{2 k+1} \ldots \hat{\xi}_{2} \hat{\xi}_{1}=(-1)^{k} g_{2 k+1[2 k} \ldots g_{3[2} \xi_{1]] \ldots]}
$$

where we denote $g_{i j}=\hat{\boldsymbol{\xi}}_{i} \cdot \hat{\boldsymbol{\xi}}_{j}$ and $a_{[i} b_{j]}=a_{i} b_{j}-a_{j} b_{i}$.

Algebraic Construction

Consider the hypercomplex number system

$$
\Omega: \quad\{p, q, r\} \longleftrightarrow\left\{\mathcal{P}_{\xi}^{\|}, \mathcal{P}_{\xi}^{\perp}, \hat{\boldsymbol{\xi}}\right\}
$$

defined by the multiplications

$$
p^{2}=p, \quad p q=p r=0, \quad q r=r, \quad q^{2}=-r^{2}=q
$$

that clearly indicate the isomorphism $\Omega \cong \mathbb{R} \oplus \mathbb{C}$. Hence, one has

$$
\varphi=\varphi_{0} p+\varphi_{1} q+\varphi_{2} r \quad \longrightarrow \quad\left\{\varphi_{0}, \varphi_{1}+i \varphi_{2}\right\} \in \mathbb{R} \oplus \mathbb{C}
$$

and Ω inherits its properties from the real and complex algebra.

Cylindrical Representation

Consider the projections

$$
\langle\varphi\rangle_{0}=p \varphi, \quad\langle\varphi\rangle_{\perp}=q \varphi
$$

allowing us to consider separate norms in Ω_{0} and Ω_{\perp}. Then

$$
\varphi_{1}+i \varphi_{2}=\rho \mathrm{e}^{i \vartheta}, \quad \rho=\|\varphi\|_{\perp}, \quad \vartheta=\arg \langle\varphi\rangle_{\perp}=\operatorname{atan}_{2} \frac{\varphi_{2}}{\varphi_{1}}
$$

and hence, the famous Moivre's formula

$$
\varphi^{n}=\varphi_{0}^{n} p+\rho^{n}[\cos (n \vartheta) q+\sin (n \vartheta) r]=\varphi_{0}^{n} p+\rho^{n}\left\langle\mathrm{e}^{n \vartheta r}\right\rangle_{\perp}
$$

as well as the formula for the n-th root

$$
(\sqrt[n]{\varphi})_{j k}=\left(\sqrt[n]{\varphi_{0}}\right)_{j} p+\rho^{\frac{1}{n}}\left(\cos \frac{\vartheta+2 k \pi}{n} q+\sin \frac{\vartheta+2 k \pi}{n} r\right) .
$$

Analyticity and Invertibility

The expansion $\operatorname{End}(\Omega) \ni f(\varphi)=f_{0} p+f_{1} q+f_{2} r$ can be written also as

$$
\left\{\varphi_{0}, z\right\} \xrightarrow{f}\left\{f_{0}\left(\varphi_{0}\right), h(z)\right\}, \quad h(z)=f_{1}(z)+i f_{2}(z)
$$

Then, f is analytic in Ω iff f_{0}, h are analytic respectively in \mathbb{R} and \mathbb{C}.

$$
\varphi \rightarrow \underline{\varphi}=\left(\begin{array}{ccc}
\varphi_{0} & 0 & 0 \\
0 & \varphi_{1} & -\varphi_{2} \\
0 & \varphi_{2} & \varphi_{1}
\end{array}\right)
$$

in a suitable basis and

$$
\|\varphi\|=|\operatorname{det} \underline{\varphi}|=\|\varphi\|_{0}\|\varphi\|_{\perp}^{2}=\left|\varphi_{0}\right|\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)
$$

so $\exists \varphi^{-1} \Leftrightarrow\|\varphi\| \neq 0$ and similarly, if f is analytic $\exists f^{-1} \Leftrightarrow\left\|f^{\prime}\right\| \neq 0$.

Some Useful Formulas

Consider the geometric series

$$
\sum_{n=0}^{\infty} \varphi^{n}=\frac{p}{1-\varphi_{0}}+\frac{\left(1-\varphi_{1}\right) q+\varphi_{2} r}{\left(1-\varphi_{1}\right)^{2}+\varphi_{2}^{2}}, \quad\|\varphi\|_{0},\|\varphi\|_{\perp}<1
$$

as well as the Cayley transform

$$
\operatorname{Cay}(\varphi)=\frac{1+\varphi_{0}}{1-\varphi_{0}} p+\frac{\left(1-\|\varphi\|_{\perp}^{2}\right) q+2 \varphi_{2} r}{\left(1-\varphi_{1}\right)^{2}+\varphi_{2}^{2}}
$$

and in particular

$$
\operatorname{Cay}(\lambda r)=p+\frac{1-\lambda^{2}}{1+\lambda^{2}} q+\frac{2 \lambda}{1+\lambda^{2}} r .
$$

The exponent is a typical example of globally analytic map

$$
\exp \varphi=\mathrm{e}^{\varphi_{0}} p+\mathrm{e}^{\varphi_{1}}\left(\cos \varphi_{2} q+\sin \varphi_{2} r\right), \quad \exp \varphi \exp \psi=\exp (\varphi+\psi)
$$

The Proper Lorentz Group

Similarly, we consider $\mathbb{C}^{3} \rightarrow \operatorname{End}\left(\mathbb{C}^{3}\right)$ and use the isomorphism

$$
\mathrm{SO}(3, \mathbb{C}) \cong \mathrm{SO}^{+}(3,1)
$$

to construct the Lorentz equivalent. Note also that

$$
\hat{\mathbf{x}}^{2}=\mathbf{x} \otimes \mathbf{x}-\mathbf{x}^{2} \mathcal{I}
$$

and as long as $\mathbf{x}^{2} \neq 0$, one can normalize as

$$
\mathbf{x}=\lambda \boldsymbol{\xi}
$$

with $\xi^{2}=1$ and $\lambda \in \mathbb{C}$ that yields a complexification of Ω.

Duplex Numbers

For non-isotropic vectors $\mathbf{x}^{2} \neq 0$ it is straightforward to show that

$$
\Omega^{\mathbb{C}} \cong \mathbb{C} \oplus \mathbb{D}, \quad \mathbb{D} \cong C l_{1}(\mathbb{C})
$$

where the bicomplex (duplex) numbers \mathbb{D} are generated by $\{1, i, j, k\}$ with $i^{2}=j^{2}=-1, i j=k$ is shown to be $\mathbb{D} \cong \mathbb{C}^{2}$ via the idempotents

$$
\tau_{ \pm}=\frac{1}{2}(1 \pm k), \quad \tau_{ \pm}^{2}=\tau_{ \pm}, \quad \tau_{+} \tau_{-}=0
$$

that yields the decomposition

$$
\psi_{\perp}=\psi_{-} \tau_{-}+\psi_{+} \tau_{+}, \quad \psi_{ \pm}=\psi_{1} \mp i \psi_{2} \in \mathbb{C}
$$

Bicomplex holomorphic functions satisfy

$$
\bar{\partial} \psi=\partial^{*} \psi=\bar{\partial}^{*} \psi=0
$$

that may also be written as $D^{(4)} \psi=0, D^{(2)} \psi_{1,2}=0$.

The Isotropic Case

In the isotropic case $\mathbf{x}^{2}=0$ one has $\hat{\mathbf{x}}^{2}=\mathbf{x x}^{t}$ and thus

$$
\Omega_{n u l l}^{\mathbb{C}}: \quad\{1, \ell, \epsilon\}, \quad \ell^{2}=\epsilon, \quad \ell^{3}=0
$$

is isomorphic to the matrix algebra

$$
\Omega_{n u l l}^{\mathbb{C}} \ni \psi=\psi_{0}+\psi_{1} \ell+\psi_{2} \epsilon \quad \leftrightarrow \quad \underline{\psi}=\left(\begin{array}{ccc}
\psi_{0} & \psi_{1} & \psi_{2} \\
0 & \psi_{0} & \psi_{1} \\
0 & 0 & \psi_{0}
\end{array}\right) .
$$

For example, one has the multiplication rule

$$
\varphi \psi=\varphi_{0} \psi_{0}+\left(\psi_{0} \varphi_{1}+\varphi_{0} \psi_{1}\right) \ell+\left(\varphi_{1} \psi_{1}+\psi_{0} \varphi_{2}+\varphi_{0} \psi_{2}\right) \epsilon
$$

and Taylor expansion of functions over this algebra yields

$$
f(\psi)=f\left(\psi_{0}\right)+f^{\prime}\left(\psi_{0}\right)\left[\psi_{1} \ell+\psi_{2} \epsilon\right]+\frac{1}{2} f^{\prime \prime}\left(\psi_{0}\right) \psi_{1}^{2} \epsilon
$$

for example

$$
\exp \psi=\mathrm{e}^{\psi_{0}}\left[1+\psi_{1} \ell+\left(\psi_{2}+\frac{\psi_{1}^{2}}{2}\right) \epsilon\right]
$$

Real Forms

- Dual complex numbers are embedded in the even subalgebra

$$
\mathbb{C}[\epsilon] \cong E(2) \subset \Omega_{\text {null }}^{\mathbb{C}}: \quad\{1, \epsilon\}, \quad \epsilon^{2}=0 .
$$

- The hyperbolic real form $\Omega \cong \mathbb{R} \oplus \mathbb{C}^{\prime}$, where

$$
\mathbb{C}^{\prime} \cong C_{1,0} \cong \mathbb{R}^{2}: \quad\{1, k\}, \quad j^{2}=1
$$

The Cauchy-Riemann analyticity conditions in this case are

$$
\frac{\partial f_{1}}{\partial \varphi_{1}}=\frac{\partial f_{2}}{\partial \varphi_{2}}, \quad \frac{\partial f_{1}}{\partial \varphi_{2}}=\frac{\partial f_{2}}{\partial \varphi_{1}} \quad \Leftrightarrow \frac{\partial h}{\partial z^{*}}=0 .
$$

One example is the exponential map

$$
\exp \left(\varphi_{1}+k \varphi_{2}\right)=\mathrm{e}^{\varphi_{1}}\left(\cosh \varphi_{2}+k \sinh \varphi_{2}\right)=\mathrm{e}^{\varphi_{1}-\varphi_{2}} \tau_{-}+\mathrm{e}^{\varphi_{1}+\varphi_{2}} \tau_{+}
$$ where $\tau_{ \pm}=\frac{1}{2}(1 \pm k)$ yield the retarded and accelerated wave.

- The Euclidean real form $\Omega \cong \mathbb{R} \oplus \mathbb{C}$ has already been discussed.

Recommended Readings

目 Todorov V．，Analytic Vector Functions，AIP Conf．Proc．xxx（2017）．
R Tsiotras P．and Longuski J．，A New Parameterization of the Attitude Kinematics，J．Austron．Sci． 43 （1995）．

囦 Mladenova C．，Brezov D．and Mladenov I．，New Forms of the Equations of the Attitude Kinematics，PAMM 14 （2014）．

目 Davenport C．A Hypercomplex Calculus with Applications to Special Relativity．Knoxville，Tennessee 1991，ISBN 0962383708.

囯 Kassandrov V．，Biquaternion Electrodynamics and Weyl－Cartan Geometry of Space－Time，Gravitat．\＆Cosmol． 3 （1995）．

R Aste A．，Complex Representation Theory of the Electromagnetic Field，J．Geom．Symmetry Phys． 28 （2012）．

Deformations

Consider a smooth flow $t \rightarrow g(t)$ on the Ω-bundle over \mathbb{R}^{3} and

$$
\dot{\varphi}=\dot{\varphi}_{0} p+\dot{\varphi}_{1} q+\dot{\varphi}_{2} r+\left(\varphi_{0}-\varphi_{1}\right)(\dot{r} r+r \dot{r})+\varphi_{2} \dot{r}
$$

using the correspondence

$$
\dot{r} \longleftrightarrow \dot{\hat{\boldsymbol{\xi}}}, \quad \dot{\rho}=-\dot{q}=\dot{r} r+r \dot{r} \longleftrightarrow \xi \dot{\xi}^{t}+\dot{\xi} \xi^{t} .
$$

One may consider the non-commutative term ω_{f} in $\mathrm{d} f \leftrightarrow\left\{\mathrm{~d} f_{0}, \mathrm{~d} h, \omega_{f}\right\}$

$$
\omega_{f}=f_{01} \mathrm{~d} q+f_{2} \mathrm{~d} r, \quad f_{01}=f_{1}-f_{0}
$$

from the perspective of bundle holonomy and study the geometric phase

$$
\oint_{\gamma} \mathrm{d} f=\oint_{\gamma} \omega_{f}, \quad f: \text { analytic }
$$

THANKS FOR YOUR PATIENCE!

