GRADED GEOMETRY IN MECHANICS AND FIELD THEORY

Janusz Grabowski
(Polish Academy of Sciences)

XXIX International Conference
Geometry, Integrability and Quantization
Varna, 2-7 June, 2017

Literature

The talk is based on some ideas of W . M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, and M. Rotkiewicz:

- Grabowski-Rotkiewicz, Graded bundles and homogeneity structures, J. Geom. Phys. 62 (2012), 21-36.
- Bruce-Grabowska-Grabowski, Higher order mechanics on graded bundles, J. Phys. A 48 (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, Graded bundles in the category of Lie groupoids, SIGMA 11 (2015), 090, (25pp).
- Bruce-Grabowska-Grabowski, Linear duals of graded bundles and higher analogues of (Lie) algebroids, J. Geom. Phys. 101 (2016), 71-99.
- Bruce-Grabowski-Rotkiewicz, Polarisation of graded bundles, SIGMA 12 (2016), 106, (30pp).

Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n},
$$

$A(x) \in \operatorname{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres (the latter makes sense)

Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$
local trivializations transform linearly in fibers

$A(x) \in \mathrm{GL}(n, \mathbb{R})$.
- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres (the latter makes sense)

Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers
- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres (the latter makes sense)

Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres (the latter makes sense)

Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \mathrm{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres (the latter makes sense)

Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \mathrm{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres (the latter makes sense)

Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \mathrm{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres (the latter makes sense)

Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \mathrm{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres (the latter makes sense).

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n}
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r.

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n}
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, that are
preserved by changes of local trivializations:

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $m<r$, we say that the graded bundle is of degree r

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n},
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n},
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, have, in general, vector space structure in fibers. For instance, if $(v . z) \in \mathbb{R}^{2}$ are coordinates of degrees 1.2 , resnectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
\square

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n},
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers.

is nonlinear.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r.

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n},
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r.

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n},
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r.

Graded bundles

- Vector bundles are just graded bundles of degree 1.
- Canonical example: $T^{k} M \rightarrow M$ is a graded bundle of degree k with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees $0,1,2,3$, etc. For $k=2$,

$$
\begin{aligned}
x^{\prime A} & =x^{\prime A}(x) \\
\dot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \dot{x}^{B} \\
\ddot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \ddot{x}^{B}+\frac{\partial^{2} x^{\prime A}}{\partial x^{B} \partial x^{C}}(x) \dot{x}^{B} \dot{x}^{C} .
\end{aligned}
$$

- Graded bundles F_{k} of degree k admit, like jet bundles, a tower of affine fibrations by reductions to coordinates of lower degrees

$$
F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

- Note that similar objects has been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.

Graded bundles

- Vector bundles are just graded bundles of degree 1.
- Canonical example: $T^{k} M \rightarrow M$ is a graded bundle of degree k with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees $0,1,2,3$, etc. For $k=2$,

- Graded bundles F_{k} of degree k admit, like jet bundles, a tower of affine fibrations by reductions to coordinates of lower degrees

- Note that similar objects has been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.

Graded bundles

- Vector bundles are just graded bundles of degree 1.
- Canonical example: $T^{k} M \rightarrow M$ is a graded bundle of degree k with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees $0,1,2,3$, etc. For $k=2$,
- Graded bundles F_{k} of degree k admit, like jet bundles, a tower of affine fibrations by reductions to coordinates of lower degrees
- Note that similar objects has been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this, talk.

Graded bundles

- Vector bundles are just graded bundles of degree 1.
- Canonical example: $T^{k} M \rightarrow M$ is a graded bundle of degree k with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees $0,1,2,3$, etc. For $k=2$,

$$
\begin{aligned}
x^{\prime A} & =x^{\prime A}(x) \\
\dot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \dot{x}^{B} \\
\ddot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \ddot{x}^{B}+\frac{\partial^{2} x^{\prime A}}{\partial x^{B} \partial x^{C}}(x) \dot{x}^{B} \dot{x}^{C} .
\end{aligned}
$$

- Graded bundles F_{k} of degree k admit, like jet bundles, a tower of affine fibrations by reductions to coordinates of lower degrees
- Note that similar objects has been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.

Graded bundles

- Vector bundles are just graded bundles of degree 1.
- Canonical example: $T^{k} M \rightarrow M$ is a graded bundle of degree k with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees $0,1,2,3$, etc. For $k=2$,

$$
\begin{aligned}
x^{\prime A} & =x^{\prime A}(x) \\
\dot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \dot{x}^{B} \\
\ddot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \ddot{x}^{B}+\frac{\partial^{2} x^{\prime A}}{\partial x^{B} \partial x^{C}}(x) \dot{x}^{B} \dot{x}^{C} .
\end{aligned}
$$

- Graded bundles F_{k} of degree k admit, like jet bundles, a tower of affine fibrations by reductions to coordinates of lower degrees

$$
F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

- Note that similar objects has been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name
we will work with classical, purely even manifolds during this talk

Graded bundles

- Vector bundles are just graded bundles of degree 1.
- Canonical example: $T^{k} M \rightarrow M$ is a graded bundle of degree k with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees $0,1,2,3$, etc. For $k=2$,

$$
\begin{aligned}
x^{\prime A} & =x^{\prime A}(x) \\
\dot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \dot{x}^{B} \\
\ddot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \ddot{x}^{B}+\frac{\partial^{2} x^{\prime A}}{\partial x^{B} \partial x^{C}}(x) \dot{x}^{B} \dot{x}^{C} .
\end{aligned}
$$

- Graded bundles F_{k} of degree k admit, like jet bundles, a tower of affine fibrations by reductions to coordinates of lower degrees

$$
F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

- Note that similar objects has been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.

Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates x^{α}, and degrees $w_{a}>0$ for the fibre coordinates y^{a}, we can define on the graded bundle F a globally defined weight vector field (Euler vector field)

$$
\nabla_{F}=\sum w_{a} y^{a} \partial_{y^{a}} .
$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) k if $\nabla_{F}(f)=k f$, or equivalently $f\left(h_{t}(x)\right)=t^{k} f(x)$.
- Note that for graded bundles only non-negative integer degrees of homogeneity are allowed. This is not true for more general 'graded manifolds': for $F=(0,1)$, with the coordinate x of degree 1 , the function x^{a} is homogeneous of degree a for all $a \in \mathbb{R}$.

Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates x^{α}, and degrees w_{a} can define on the graded bundle F a globally defined weight vector field (Euler vector field)
 $w_{a} y^{a} \partial_{y^{a}}$
- The flow of the weight vector field eutends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) k if $\nabla_{F}(f)=k f$, or equivalently $f\left(h_{t}(x)\right)=t^{k} f(x)$.
- Note that for graded bundles only non-negative integer degrees of homogeneity are allowed. This is not true for more general 'graded manifolds': for $F=(0,1)$, with the coordinate x of degree 1 , the function x^{a} is homogeneous of degree a for all

Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates x^{α}, and degrees $w_{a}>0$ for the fibre coordinates y^{a}, can define on the graded bundle F a globally defined weight vector field (Euler vector field)

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$ Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) k if $\nabla_{F}(f)=k f$, or equivalently $f\left(h_{t}(x)\right)=t^{k} f(x)$
- Note that for graded bundles only non-negative integer degrees of homogeneity are allowed. This is not true for more general 'graded manifolds': for $F=(0,1)$, with the coordinate x of degree 1 , the function x^{a} is homogeneous of degree a for all

Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates x^{α}, and degrees $w_{a}>0$ for the fibre coordinates y^{a}, we can define on the graded bundle F a globally defined weight vector field (Euler vector field)

$$
\nabla_{F}=\sum_{a} w_{a} y^{a} \partial_{y^{a}}
$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure. $\nabla_{F}(f)=k f$, or equivalently $f\left(h_{t}(x)\right)=t^{k} f(x)$
- Note that for graded bundles only non-negative integer degrees of homogeneity are allowed. This is not true for more general 'graded manifolds': for $F=(0,1)$, with the coordinate x of degree 1 , the function x^{a} is homogeneous of degree

Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates x^{α}, and degrees $w_{a}>0$ for the fibre coordinates y^{a}, we can define on the graded bundle F a globally defined weight vector field (Euler vector field)

$$
\nabla_{F}=\sum_{a} w_{a} y^{a} \partial_{y^{a}} .
$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
-

A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) k if $\nabla_{F}(f)=k f$, or equivalently $f\left(h_{t}(x)\right)=t^{k} f(x)$.

- Note that for graded bundles only non-negative integer degrees of homogeneity are allowed. This is not true for more general 'graded manifolds': for $F=(0,1)$, with the coordinate x of degree 1 , the function x^{a} is homogeneous of degree

Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates x^{α}, and degrees $w_{a}>0$ for the fibre coordinates y^{a}, we can define on the graded bundle F a globally defined weight vector field (Euler vector field)

$$
\nabla_{F}=\sum_{a} w_{a} y^{a} \partial_{y^{a}} .
$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) k if $\nabla_{F}(f)=k f$, or equivalently $f\left(h_{t}(x)\right)=t^{k} f(x)$.
- Note that for graded bundles only non-negative integer degrees of homogeneity are allowed. This is not true for more general 'graded manifolds': for $F=(0,1)$, with the coordinate x of degree 1 , the function x^{a} is homogeneous of degree

Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates x^{α}, and degrees $w_{a}>0$ for the fibre coordinates y^{a}, we can define on the graded bundle F a globally defined weight vector field (Euler vector field)

$$
\nabla_{F}=\sum_{2} w_{a} y^{a} \partial_{y^{a}}
$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) k if $\nabla_{F}(f)=k f$, or equivalently $f\left(h_{t}(x)\right)=t^{k} f(x)$.
- Note that for graded bundles only non-negative integer degrees of homogeneity are allowed. This is not true for more general 'graded manifolds': for $F=(0,1)$, with the coordinate x of degree 1 , the function x^{a} is homogeneous of degree a for all $a \in \mathbb{R}$.

Graded Bundles

Morphisms of two homogeneity structures $\left(F^{i}, h^{i}\right), i=1,2$ ，are defined as smooth maps $\Phi: F^{1} \rightarrow F^{2}$ intertwining the \mathbb{R}－actions：$\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$ ． Consequently，a homogeneity substructure is a smooth submanifold S invariant with respect to $h, h_{t}(S) \subset S$ ．

The fundamental fact（cf．［Grabowski－Rotkiewicz］）says that graded bundles and homogeneity structures are in fact equivalent concepts．There is namely a canonical isomorphism of the category of graded bundles and the category of homogeneity structures．This is because any manifold equipped with a homogeneity structure admits an atlas consisting of homogeneous functions．

In particular，we get that morphisms of vector bundles are just smooth maps intertwining multiplications by reals and that vector subbundles are submanifolds invariant by multiplication by reals（vector addition can be forgotten）．

Graded Bundles

Morphisms of two homogeneity structures $\left(F^{i}, h^{i}\right), i=1,2$, are defined as smooth maps $\Phi: F^{1} \rightarrow F^{2}$ intertwining the \mathbb{R}-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$. Consequently, a homogeneity substructure is a smooth submanifold S invariant with respect to $h, h_{t}(S) \subset S$.

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts. There is namely a canonical isomorphism of the category of graded bundles and the category of homogeneity structures. This is because any manifold equipped with a homogeneity structure admits an atlas consisting of homogeneous functions.

In particular, we get that morphisms of vector bundles are just smooth maps intertwining multiplications by reals and that vector subbundles are submanifolds invariant by multiplication by reals (vector addition can be forgotten)

Graded Bundles

Morphisms of two homogeneity structures $\left(F^{i}, h^{i}\right), i=1,2$, are defined as smooth maps $\Phi: F^{1} \rightarrow F^{2}$ intertwining the \mathbb{R}-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$. Consequently, a homogeneity substructure is a smooth submanifold S invariant with respect to $h, h_{t}(S) \subset S$.

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts. There is namely a canonical isomorphism of the category of graded bundles and the category of homogeneity structures. This is because any manifold equipped with a homogeneity structure admits an atlas consisting of homogeneous functions.

In particular, we get that morphisms of vector bundles are just smooth maps intertwining multiplications by reals and that vector subbundles are submanifolds invariant by multiplication by reals (vector addition can be forgotten)

Graded Bundles

Morphisms of two homogeneity structures $\left(F^{i}, h^{i}\right), i=1,2$, are defined as smooth maps $\Phi: F^{1} \rightarrow F^{2}$ intertwining the \mathbb{R}-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$. Consequently, a homogeneity substructure is a smooth submanifold S invariant with respect to $h, h_{t}(S) \subset S$.

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts. There is namely a canonical isomorphism of the category of graded bundles and the category of homogeneity structures. This is because any manifold equipped with a homogeneity structure admits an atlas consisting of homogeneous functions.

In particular, we get that morphisms of vector bundles are just smooth maps intertwining multiplications by reals and that vector subbundles are submanifolds invariant hy multinlication by reals (vector addition can be forgotten).

Graded Bundles

Morphisms of two homogeneity structures $\left(F^{i}, h^{i}\right), i=1,2$, are defined as smooth maps $\Phi: F^{1} \rightarrow F^{2}$ intertwining the \mathbb{R}-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$. Consequently, a homogeneity substructure is a smooth submanifold S invariant with respect to $h, h_{t}(S) \subset S$.

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts. There is namely a canonical isomorphism of the category of graded bundles and the category of homogeneity structures. This is because any manifold equipped with a homogeneity structure admits an atlas consisting of homogeneous functions.

In particular, we get that morphisms of vector bundles are just smooth maps intertwining multiplications by reals and that vector subbundles are submanifolds invariant by multiplication by reals (vector addition can be forgotten).

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines and Mackenzie to double graded bundles.
- However, thanks to the simple descrintion in terms of a homogeneity structure, the categorial and 'diagrammatic' definition can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A double graded bundle is a manifold equipped with two homogeneity structures h^{1}, h^{2} which are compatible in the sense that

$$
h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad \text { for all } s, t \in \mathbb{R}
$$

- For vector bundles this is equivalent to the concept of a double vector bundle invented and studied by Pradines and Mackenzie, and can be extended to n-fold graded bundles in the obvious way:

$$
h_{t}^{i} \circ h_{s}^{j}=h_{s}^{j} \circ h_{t}^{j} \quad \text { for all } s, t \in \mathbb{R}
$$

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines and Mackenzie to double graded bundles.
- However, thanks to the simple description in terms of a homogeneity structure, the categorial and 'diagrammatic' definition can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A double graded bundle is a manifold equipped with two homogeneity structures h^{1}, h^{2} which are compatible in the sense that

$$
h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad \text { for all } s, t \in \mathbb{R}
$$

- For vector bundles this is equivalent to the concept of a double vector bundle invented and studied by Pradines and Mackenzie, and can be extended to n-fold graded bundles in the obvious way:

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines and Mackenzie to double graded bundles.
- However, thanks to the simple description in terms of a homogeneity structure, the categorial and 'diagrammatic' definition can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A double graded bundle is a manifold equipped with two homogeneity structures h^{1}, h^{2} which are compatible in the sense that
- For vector bundles this is equivalent to the concept of a double vector bundle invented and studied by Pradines and Mackenzie, and can be extended to n-fold graded bundles in the obvious way:

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines and Mackenzie to double graded bundles.
- However, thanks to the simple description in terms of a homogeneity structure, the categorial and 'diagrammatic' definition can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following:
two homogeneity structures h^{1}, h^{2} which are compatible in the sense that
- For vector bundles this is equivalent to the concept of a double vector bundle invented and studied by Pradines and Mackenzie, and can be extended to n-fold graded bundles in the obvious way

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines and Mackenzie to double graded bundles.
- However, thanks to the simple description in terms of a homogeneity structure, the categorial and 'diagrammatic' definition can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A double graded bundle is a manifold equipped with two homogeneity structures h^{1}, h^{2} which are compatible in the sense that

$$
h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad \text { for all } s, t \in \mathbb{R}
$$

- For vector bundles this is equivalent to the concept of a double vector bundle invented and studied by Pradines and Mackenzie, and can be extended to n-fold graded bundles in the obvious way:

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines and Mackenzie to double graded bundles.
- However, thanks to the simple description in terms of a homogeneity structure, the categorial and 'diagrammatic' definition can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A double graded bundle is a manifold equipped with two homogeneity structures h^{1}, h^{2} which are compatible in the sense that

$$
h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad \text { for all } s, t \in \mathbb{R}
$$

- For vector bundles this is equivalent to the concept of a double vector bundle invented and studied by Pradines and Mackenzie, and can be extended to n-fold graded bundles in the obvious way:

$$
h_{t}^{i} \circ h_{s}^{j}=h_{s}^{j} \circ h_{t}^{j} \quad \text { for all } s, t \in \mathbb{R} \quad \text { and } \quad i, j=1, \ldots, n .
$$

Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree k, then $T F$ and $T^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k.
- The above examples are double graded bundle whose one structure is linear. We will call such structures GrL-bundles.
- There are also lifts of graded structures on F to $T^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then $T E$ and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$ (Tulczyjew, Mackenzie \& Xu), with an isomorphism

$$
\mathcal{R}_{E}: \mathrm{T}^{*} E^{*} \rightarrow \mathrm{~T}^{*} E
$$

- Since a linear Poisson structure on E^{*} yields a map $T^{*} E^{*} \rightarrow T E^{*}$, a Lie algebroid structure on E can be encoded as a morphism of double vector bundles (!),

$$
\varepsilon: \mathrm{T}^{*} E \rightarrow \mathrm{~T} E^{*} .
$$

Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree k, then $\mathrm{T} F$ and $\mathrm{T}^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k.
- The above examples are double graded bundle whose one structure is linear. We will call such structures GrL-bundles.
- There are also lifts of graded structures on F to $T^{r} F$
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then $T E$ and $T^{*} E$ are double vector bundles. The latter is isomorphic with $\mathrm{T}^{*} E^{*}$ (Tulczyjew, Mackenzie \& Xu), with an isomorphism

- Since a linear Poisson structure on E^{*} yields a map $T^{*} E^{*} \rightarrow T E^{*}$ a Lie algebroid structure on E can be encoded as a morphism of double vector bundles (!)

Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree k, then $\mathrm{T} F$ and $\mathrm{T}^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k.
- The above examples are double graded bundle whose one structure is linear. We will call such structures GrL-bundles.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then $T E$ and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$ (Tulczyjew, Mackenzie \& Xu), with an isomorphism

- Since a linear Poisson structure on E^{*} yields a map $T^{*} E^{*} \rightarrow T E^{*}$ a Lie algebroid structure on E can be encoded as a morphism of double vector bundles (!),

Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree k, then $\mathrm{T} F$ and $\mathrm{T}^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k.
- The above examples are double graded bundle whose one structure is linear. We will call such structures GrL-bundles.
- There are also lifts of graded structures on F to $T^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then $T E$ and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$ (Tulczyjew, Mackenzie \& Xu), with an isomorphism

- Since a linear Poisson structure on E^{*} yields a map $T^{*} E^{*} \rightarrow T E^{*}$ a Lie algebroid structure on E can be encoded as a morphism of double vector bundles (!),

Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree k, then $\mathrm{T} F$ and $\mathrm{T}^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k.
- The above examples are double graded bundle whose one structure is linear. We will call such structures GrL-bundles.
- There are also lifts of graded structures on F to $T^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then TE and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$ (Tulczyjew, Mackenzie \& Xu), with an isomorphism

$$
\mathcal{R}_{E}: \mathrm{T}^{*} E^{*} \rightarrow \mathrm{~T}^{*} E
$$

- Since a linear Poisson structure on E^{*} yields a map $T^{*} E^{*} \rightarrow T E^{*}$

Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree k, then $\mathrm{T} F$ and $\mathrm{T}^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k.
- The above examples are double graded bundle whose one structure is linear. We will call such structures GrL-bundles.
- There are also lifts of graded structures on F to $T^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then TE and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$
(Tulczyjew, Mackenzie \& Xu), with an isomorphism

$$
\mathcal{R}_{E}: \mathrm{T}^{*} E^{*} \rightarrow \mathrm{~T}^{*} E
$$

- Since a linear Poisson structure on E^{*} yields a map $T^{*} E^{*} \rightarrow T E^{*}$,

Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree k, then $T F$ and $T^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k.
- The above examples are double graded bundle whose one structure is linear. We will call such structures GrL-bundles.
- There are also lifts of graded structures on F to $T^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then TE and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$ (Tulczyjew, Mackenzie \& Xu), with an isomorphism

$$
\mathcal{R}_{E}: \mathrm{T}^{*} E^{*} \rightarrow \mathrm{~T}^{*} E
$$

- Since a linear Poisson structure on E^{*} yields a map $T^{*} E^{*} \rightarrow T E^{*}$, a Lie algebroid structure on E can be encoded as a morphism of double vector bundles (!),

$$
\varepsilon: \mathrm{T}^{*} E \rightarrow \mathrm{~T} E^{*} .
$$

Motivation - higher order mechanics

First order Lagrangian mechanics

k-th order Lagrangian mechanics

Reduction w.r.t. symmetry

reduced ...

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the lagrangian phase equations:

M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$T^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(T M))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the lagrangian phase equations:
M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$T^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the lagrangian phase equations:
M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(T M))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the lagrangian phase equations:
M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(T M))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the lagrangian phase equations:
M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(T M))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the lagrangian phase equations:
M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(T M))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the lagrangian phase equations:
M - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(\mathrm{TM}), \quad M
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the lagrangian phase equations:
M - positions,
TM - (kinematic) configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(\mathrm{TM}), \quad M
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{x}}, \quad \dot{p}=\frac{\partial L}{\partial x}\right\}
$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)$. Note that L can be as well singular for the price that \mathcal{D} is an implicit equation.

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the lagrangian phase equations:
M - positions,
TM - (kinematic) configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(\mathrm{TM}), \quad M
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{x}}, \quad \dot{p}=\frac{\partial L}{\partial x}\right\}
$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x}=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial \dot{x}}\right)$.

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the lagrangian phase equations:
M - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(\mathrm{TM}), \quad M
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{x}}, \quad \dot{p}=\frac{\partial L}{\partial x}\right\}
$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)$. Note that L can be as well singular for the price that \mathcal{D} is an implicit equation.

The Tulczyjew triple - Hamiltonian side

$H: T^{*} M \rightarrow \mathbb{R}$

$M \rightarrow M$

$$
\mathcal{D}=\Pi_{M}^{\#}\left(\mathrm{~d} H\left(\mathrm{~T}^{*} M\right)\right)
$$

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad \dot{p}=-\frac{\partial H}{\partial x}, \quad \dot{x}=\frac{\partial H}{\partial p}\right\}
$$

whence the Hamilton equations.

Algebroid setting

Algebroid setting

$H: E^{*} \longrightarrow \mathbb{R}$
$\mathcal{D}=\mathcal{T} L(E)$
$L: E \longrightarrow \mathbb{R}$
$\mathcal{D}_{\boldsymbol{H}} \subset \mathrm{T}^{*} E^{*}$
$\mathcal{D}=\Pi^{\#}(\mathrm{dH}(\mathrm{F}))$
$\mathcal{D}_{L} \subset \mathrm{~T}^{*} E$

Algebroid setting

$H: E^{*} \longrightarrow \mathbb{R}$
$\mathcal{D}=\mathcal{T} L(E)$
$L: E \longrightarrow \mathbb{R}$
$\mathcal{D}_{\boldsymbol{H}} \subset \mathrm{T}^{*} \mathrm{E}^{*}$
$\mathcal{D}=\Pi^{\#}\left(\mathrm{~d} H\left(E^{*}\right)\right)$
$\mathcal{D}_{L} \subset \mathrm{~T}^{*} E$

Algebroid setting

$H: E^{*} \longrightarrow \mathbb{R}$
$\mathcal{D}=\mathcal{T} L(E)$
$L: E \longrightarrow \mathbb{R}$
$\mathcal{D}_{H} \subset \mathrm{~T}^{*} E^{*}$
$\mathcal{D}=\Pi^{\#}\left(\mathrm{~d} H\left(E^{*}\right)\right)$
$\mathcal{D}_{L} \subset \mathrm{~T}^{*} E$

Algebroid setting with vakonomic constraints

where S_{L} is the lagrangian submanifold in $T^{*} E$ induced by the Lagrangian on the constraint S, and $\mathrm{d} L: S \rightarrow \mathrm{~T}^{*} E$ is the corresponding relation,

$$
S_{L}=\left\{\alpha_{e} \in \mathrm{~T}_{e}^{*} E: e \in S \text { and }\left\langle\alpha_{e}, v_{e}\right\rangle=\mathrm{d} L\left(v_{e}\right) \text { for every } v_{e} \in \mathrm{~T}_{e} S\right\}
$$

The vakonomically constrained phase dynamics is just $\mathcal{D}=\varepsilon\left(S_{L}\right) \subset T E^{*}$.

Algebroid setting with vakonomic constraints

where S_{L} is the lagrangian submanifold in $T^{*} E$ induced by the Lagrangian on the constraint S, and $\widetilde{d L}: S \rightarrow \mathrm{~T}^{*} E$ is the corresponding relation,
$S_{L}=\left\{\alpha_{e} \in T_{e}^{*} E: e \in S\right.$ and $\left\langle\alpha_{e}, v_{e}\right\rangle=d L\left(v_{e}\right)$ for every $\left.v_{e} \in T_{e} S\right\}$
The vakonomically constrained phase dynamics is just $\mathcal{D}=\varepsilon\left(S_{L}\right) \subset \mathrm{TE}^{*}$

Algebroid setting with vakonomic constraints

where S_{L} is the lagrangian submanifold in $\mathrm{T}^{*} E$ induced by the Lagrangian on the constraint S, and $\widetilde{d L}: S \rightarrow \mathrm{~T}^{*} E$ is the corresponding relation,

$$
S_{L}=\left\{\alpha_{e} \in \mathrm{~T}_{e}^{*} E: e \in S \text { and }\left\langle\alpha_{e}, v_{e}\right\rangle=\mathrm{d} L\left(v_{e}\right) \text { for every } v_{e} \in \mathrm{~T}_{e} S\right\}
$$

The vakonomically constrained phase dynamics is just $\mathcal{D}=\varepsilon\left(S_{L}\right) \subset T E^{*}$

Algebroid setting with vakonomic constraints

where S_{L} is the lagrangian submanifold in $\mathrm{T}^{*} E$ induced by the Lagrangian on the constraint S, and $\widetilde{d L}: S \rightarrow \mathrm{~T}^{*} E$ is the corresponding relation,

$$
S_{L}=\left\{\alpha_{e} \in \mathrm{~T}_{e}^{*} E: e \in S \text { and }\left\langle\alpha_{e}, v_{e}\right\rangle=\mathrm{d} L\left(v_{e}\right) \text { for every } v_{e} \in \mathrm{~T}_{e} S\right\}
$$

The vakonomically constrained phase dynamics is just $\mathcal{D}=\varepsilon\left(S_{L}\right) \subset \mathrm{T} E^{*}$.

Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $T T^{k-1} Q$ as an affine subbundle of holonomic vectors:

$$
(q, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \stackrel{(k)}{q}) \mapsto(q, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \stackrel{(k)}{q})
$$

Thus we work with the standard Tulczyjew triple for TM, where $M=T^{k-1} Q$, with the presence of vakonomic constraint $T^{k} Q \subset T^{-}{ }^{-1} Q$:

Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$ as an affine subbundle of holonomic vectors:

Thus we work with the standard Tulczyjew triple for TM, where $M=T^{k-1} Q$, with the presence of vakonomic constraint $T^{k} Q \subset T^{-}{ }^{k-1} Q$.

Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$

Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$ as an affine subbundle of holonomic vectors:

Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$ as an affine subbundle of holonomic vectors:

$$
\left.(q, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \stackrel{(k)}{q}) \mapsto(q, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \stackrel{(k)}{q}) . . .^{q}\right)
$$

Thus we work with the standard Tulczyjew triple for TM, where $M=\mathrm{T}^{k-1} Q$, with the presence of vakonomic constraint

Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$ as an affine subbundle of holonomic vectors:

$$
(q, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \stackrel{(k)}{q}) \mapsto(q, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \stackrel{(k)}{q}) .
$$

Thus we work with the standard Tulczyjew triple for TM, where $M=\mathrm{T}^{k-1} Q$, with the presence of vakonomic constraint $\mathrm{T}^{k} Q \subset \mathrm{TT}^{k-1} Q$:

Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$ as an affine subbundle of holonomic vectors:

$$
(q, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \stackrel{(k)}{q}) \mapsto(q, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \stackrel{(k)}{q})
$$

Thus we work with the standard Tulczyjew triple for TM, where $M=\mathrm{T}^{k-1} Q$, with the presence of vakonomic constraint $\mathrm{T}^{k} Q \subset \mathrm{TT}^{k-1} Q$:

Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \dot{q}, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial \dot{q}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial q)}\right\}$
This leads to the higher Euler-Lagrange equations in the traditional form:

$$
0=\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\cdots+(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}}\left(\frac{\partial L}{\partial \underset{q}{(k)}}\right)
$$

These equations can be viewed as a system of ordinary differential equations of order k on $T^{k} Q$ or, which is the standard point of view, as an ordinary differential equation of order $2 k$ on Q.

Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \dot{q}, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics

This leads to the higher Euler-Lagrange equations in the traditional form:

These equations can be viewed as a system of ordinary differential equations of order k on $T^{k} Q$ or, which is the standard point of view, as an ordinary differential equation of order $2 k$ on Q.

Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \dot{q}, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial \underset{q}{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial \underset{q}{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

These equations can be viewed as a system of ordinary differential equations of order k on $T^{k} Q$ or, which is the standard point of view, as an ordinary differential equation of order $2 k$ on Q.

Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \dot{q}, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

These equations can be viewed as a system of ordinary differential equations of order k on $T^{k} Q$ or, which is the standard point of view, as an ordinary differential equation of order $2 k$ on Q.

Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \dot{q}, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

$$
\begin{array}{r}
\stackrel{(i)}{q}=\frac{\mathrm{d}^{i} q}{\mathrm{~d} t^{i}}, i=1, \ldots, k, \\
0=\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\cdots+(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}}\left(\frac{\partial L}{\partial_{q}^{(k)}}\right) .
\end{array}
$$

These equations can be viewed as a system of ordinary differential equations of order k on $T^{k} Q$ or, which is the standard point of view, as an ordinary differential equation of order $2 k$ on Q.

Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \dot{q}, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

$$
\begin{array}{r}
\stackrel{(i)}{q}=\frac{\mathrm{d}^{i} q}{\mathrm{~d} t^{i}}, \quad i=1, \ldots, k, \\
0=\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\cdots+(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}}\left(\frac{\partial L}{\partial^{(k)}}\right) .
\end{array}
$$

These equations can be viewed as a system of ordinary differential equations of order k on $T^{k} Q$

Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \dot{q}, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

$$
\begin{array}{r}
\stackrel{(i)}{q}=\frac{\mathrm{d}^{i} q}{\mathrm{~d} t^{i}}, \quad i=1, \ldots, k, \\
0=\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\cdots+(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}}\left(\frac{\partial L}{\partial \stackrel{(k)}{q}}\right) .
\end{array}
$$

These equations can be viewed as a system of ordinary differential equations of order k on $T^{k} Q$ or, which is the standard point of view, as an

Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \dot{q}, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

$$
\begin{array}{r}
\stackrel{(i)}{q}=\frac{\mathrm{d}^{i} q}{\mathrm{~d} t^{i}}, \quad i=1, \ldots, k, \\
0=\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\cdots+(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}}\left(\frac{\partial L}{\partial \stackrel{(k)}{q}}\right) .
\end{array}
$$

These equations can be viewed as a system of ordinary differential equations of order k on $T^{k} Q$ or, which is the standard point of view, as an ordinary differential equation of order $2 k$ on Q.

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^{k} Q \hookrightarrow T T^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical linearization functor I : GrB \rightarrow GrL from the category of graded bundles into the category of GrL-bundles which assigns, for an arbitrary graded bundle F_{k} of degree k, a canonical GrL-bundle I $\left(F_{k}\right)$ of bi-degree $(k-1,1)$ which is linear over F_{k-1}, called the linearization of F_{k}, together with a graded embedding $\iota: F_{k} \hookrightarrow I\left(F_{k}\right)$ of F_{k} as an affine subbundle of the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$.

Elements of $F_{k} \subset I\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the GrL-bundle I $\left(F_{k}\right)$.
Another geometric part we need is a (Lie) algebroid structure on the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such GrL-bundles D weighted (Lie) algebroids

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

```
Theorem (Bruce-Grabowska-Grabowski)
There is a canonical linearization functor I : GrB }->\mathrm{ GrL from the category
of graded bundles into the category of GrL-bundles which assigns, for an
arbitrary graded bundle F}\mp@subsup{F}{k}{}\mathrm{ of degree k, a canonical GrL-bundle I( F Fk) of
bi-degree ( }k-1,1)\mathrm{ which is linear over }\mp@subsup{F}{k-1}{}\mathrm{ , called the linearization of
F}\mp@subsup{F}{k}{}\mathrm{ , together with a graded embedding }\iota:\mp@subsup{F}{k}{}\hookrightarrowI(F\mp@subsup{F}{k}{})\mathrm{ of }\mp@subsup{F}{k}{}\mathrm{ as an affine
subbundle of the vector bundle I( F
```

Elements of $F_{k} \subset \mathrm{I}\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the
GrL-bundle I $\left(F_{k}\right)$
Another geometric part we need is a (Lie) algebroid structure on the
vector bundle I $\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure
(homogeneity). We will call such GrL-bundles D weighted (Lie) algebroids

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical linearization functor I : GrB \rightarrow GrL from the category of graded bundles into the category of GrL-bundles

Elements of $F_{k} \subset I\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the GrL-bundle I $\left(F_{k}\right)$
Another geometric part we need is a (Lie) algebroid structure on the vector bundle $I\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such GrL-bundles D weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $T T_{\underline{E}}^{h}$

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical linearization functor I : GrB \rightarrow GrL from the category of graded bundles into the category of GrL-bundles which assigns, for an arbitrary graded bundle F_{k} of degree k, a canonical GrL-bundle I $\left(F_{k}\right)$ of bi-degree $(k-1,1)$ which is linear over F_{k-1},

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical linearization functor I : GrB \rightarrow GrL from the category of graded bundles into the category of GrL-bundles which assigns, for an arbitrary graded bundle F_{k} of degree k, a canonical GrL-bundle I $\left(F_{k}\right)$ of bi-degree $(k-1,1)$ which is linear over F_{k-1}, called the linearization of F_{k}, subbundle of the vector bundle I $\left(F_{k}\right) \rightarrow F_{k-1}$

Elements of $F_{k} \subset I\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the
GrL-bundle I $\left(F_{k}\right)$
Another geometric part we need is a (Lie) algebroid structure on the vector bundle $I\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such GrL-bundles D weighted (Lie) algebroids and view them as abstract generalizations of the Lię algeproidd $T \overline{\underline{E}}$

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical linearization functor I : GrB \rightarrow GrL from the category of graded bundles into the category of GrL-bundles which assigns, for an arbitrary graded bundle F_{k} of degree k, a canonical GrL-bundle I $\left(F_{k}\right)$ of bi-degree $(k-1,1)$ which is linear over F_{k-1}, called the linearization of F_{k}, together with a graded embedding $\iota: F_{k} \hookrightarrow I\left(F_{k}\right)$ of F_{k} as an affine subbundle of the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$.

Elements of $F_{k} \subset I\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the
GrL-bundle I $\left(F_{k}\right)$
Another geometric part we need is a (Lie) algebroid structure on the vector bundle $I\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such GrL-bundles D weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $T_{\underline{\underline{E}}}^{k-1}$

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical linearization functor I : GrB \rightarrow GrL from the category of graded bundles into the category of GrL-bundles which assigns, for an arbitrary graded bundle F_{k} of degree k, a canonical GrL-bundle I $\left(F_{k}\right)$ of bi-degree $(k-1,1)$ which is linear over F_{k-1}, called the linearization of F_{k}, together with a graded embedding $\iota: F_{k} \hookrightarrow I\left(F_{k}\right)$ of F_{k} as an affine subbundle of the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$.

Elements of $F_{k} \subset \mathrm{I}\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the GrL-bundle I $\left(F_{k}\right)$.
Another geometric part we need is a (Lie) algebroid structure on the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such GrL-bundles D weighted (Lie) algebroids and view them as abstract generalizations of the , Lieq algebroid $\mathrm{T}_{\underline{\underline{E}}}^{\mathrm{K}}$,

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$ ．

Theorem（Bruce－Grabowska－Grabowski）

There is a canonical linearization functor I：GrB \rightarrow GrL from the category of graded bundles into the category of GrL－bundles which assigns，for an arbitrary graded bundle F_{k} of degree k ，a canonical GrL－bundle I $\left(F_{k}\right)$ of bi－degree $(k-1,1)$ which is linear over F_{k-1} ，called the linearization of F_{k} ，together with a graded embedding $\iota: F_{k} \hookrightarrow I\left(F_{k}\right)$ of F_{k} as an affine subbundle of the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$ ．

Elements of $F_{k} \subset \mathrm{I}\left(F_{k}\right)$ may be viewed as＇holonomic vectors＇in the GrL－bundle I $\left(F_{k}\right)$ ．
Another geometric part we need is a（Lie）algebroid structure on the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$ ，compatible with the second graded structure （homogeneity）．
and view them as abstract seneralizations of the

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical linearization functor I: GrB \rightarrow GrL from the category of graded bundles into the category of GrL-bundles which assigns, for an arbitrary graded bundle F_{k} of degree k, a canonical GrL-bundle I $\left(F_{k}\right)$ of bi-degree $(k-1,1)$ which is linear over F_{k-1}, called the linearization of F_{k}, together with a graded embedding $\iota: F_{k} \hookrightarrow I\left(F_{k}\right)$ of F_{k} as an affine subbundle of the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$.

Elements of $F_{k} \subset \mathrm{I}\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the GrL-bundle I $\left(F_{k}\right)$.
Another geometric part we need is a (Lie) algebroid structure on the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such GrL-bundles D weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $\mathrm{T}_{\underline{\underline{E}}}{ }^{k-1} M$.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^{k} \mathcal{G}^{s} \subset T^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\mathrm{T}^{k} \mathcal{G}^{\underline{s}}
$$

$$
M
$$

inherits graded bundle structure of degree k as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G}

Theorem

The linearisation of the graded bundle $A^{k}(\mathcal{G})$ is given as

$$
\mid\left(A^{k}(\mathcal{G})\right) \sim\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} T A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=T \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$. Here, $\rho: A(\mathcal{G}) \rightarrow$ TM is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^{k} \mathcal{G}^{s} \subset T^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves.
bundle
inherits graded bundle structure of degree k as a graded subbundle of $T^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G}

Theorem

The linearisation of the graded bundle $A^{k}(\mathcal{G})$ is given as

$$
\mid\left(A^{k}(\mathcal{G})\right) \sim\left\{(Y, Z) \in A(\mathcal{G}) \times M T A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=T \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$. Here, $\rho: A(\mathcal{G}) \rightarrow$ TM is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $\mathrm{T}^{k} \mathcal{G}^{\underline{s}} \subset \mathrm{~T}^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{\underline{s}}\right|_{M},
$$

inherits graded bundle structure of degree k as a graded subbundle of $T^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G}

Theorem

The linearisation of the graded bundle $A^{k}(\mathcal{G})$ is given as

$$
\mid\left(A^{k}(\mathcal{G})\right) \simeq\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} \mathrm{~T} A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$. Here, $\rho: A(\mathcal{G}) \rightarrow$ TM is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $\mathrm{T}^{k} \mathcal{G}^{\underline{s}} \subset \mathrm{~T}^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{\underline{s}}\right|_{M}
$$

inherits graded bundle structure of degree k as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G}.

```
Theorem
The linearisation of the graded bundle \(A^{k}(\mathcal{G})\) is given as
\(\square\) viewed as a vector bundle over \(A^{k-1}(\mathcal{G})\) with respect to the obvious projection of part \(Z\) onto \(A^{k-1}(\mathcal{G})\). Here, \(\rho: A(\mathcal{G}) \rightarrow\) TM is the standard anchor of the Lie algebroid and \(\tau: A^{k-1}(\mathcal{G}) \rightarrow M\) is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.
```


Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $\mathrm{T}^{k} \mathcal{G}^{s} \subset \mathrm{~T}^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{\underline{s}}\right|_{M}
$$

inherits graded bundle structure of degree k as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G}.

Theorem

The linearisation of the graded bundle $A^{k}(\mathcal{G})$ is given as

$$
\mathrm{I}\left(A^{k}(\mathcal{G})\right) \simeq\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} \mathrm{~T} A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious
projection of part Z onto $A^{k-1}(\mathcal{G})$. Here, $\rho: A(\mathcal{G}) \rightarrow$ TM is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $\mathrm{T}^{k} \mathcal{G}^{s} \subset \mathrm{~T}^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{\underline{s}}\right|_{M}
$$

inherits graded bundle structure of degree k as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G}.

Theorem

The linearisation of the graded bundle $A^{k}(\mathcal{G})$ is given as

$$
\mathrm{I}\left(A^{k}(\mathcal{G})\right) \simeq\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} \mathrm{~T} A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^{k} \mathcal{G}^{s} \subset T^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{\underline{s}}\right|_{M}
$$

inherits graded bundle structure of degree k as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G}.

Theorem

The linearisation of the graded bundle $A^{k}(\mathcal{G})$ is given as

$$
\mathrm{I}\left(A^{k}(\mathcal{G})\right) \simeq\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} \mathrm{~T} A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$. Here, $\rho: A(\mathcal{G}) \rightarrow$ TM is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^{k} \mathcal{G}^{s} \subset T^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{\underline{s}}\right|_{M}
$$

inherits graded bundle structure of degree k as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G}.

Theorem

The linearisation of the graded bundle $A^{k}(\mathcal{G})$ is given as

$$
\mathrm{I}\left(A^{k}(\mathcal{G})\right) \simeq\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} \mathrm{~T} A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$. Here, $\rho: A(\mathcal{G}) \rightarrow$ TM is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

Lagrangian framework for graded bundles

A weighted Lie algebroid on I(F_{k}) gives the Tulczyjew triple

Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} \mid\left(F_{k}\right) \rightarrow \mathrm{T} I^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)=F_{k-1} \times_{M} \bar{F}_{k}$ is the so called Mironian of F_{k}. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times M T^{*} M . \mathcal{T} L$ is the Tulczyjew differential and λ_{L} the Legendre relation.

W/hat replaces Lie algehroids in this version of higher Lagrangian theory are linearizations of graded bundles equipped with weighted Lie algebroid structures (weighted Lie algebroids on symmetric GrL-bundles).

Lagrangian framework for graded bundles

A weighted Lie algebroid on $\mathrm{I}\left(F_{k}\right)$ gives the Tulczyjew triple

Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} \mid\left(F_{k}\right) \rightarrow \mathrm{T} I^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)=F_{k-1} \times_{M} \bar{F}_{k}$ is the so called Mironian of F_{k}. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times M T^{*} M . T L$ is the Tulczyjew differential and λ_{L} the Legendre relation.

W/hat replaces Lie algebroids in this version of higher Lagrangian theory are linearizations of graded bundles equipped with weighted Lie algebroid structures (weighted Lie algebroids on symmetric GrL-bundles).

Lagrangian framework for graded bundles

A weighted Lie algebroid on $\mathrm{I}\left(F_{k}\right)$ gives the Tulczyjew triple

Here, the diagram consists of relations,
and $\operatorname{Mi}\left(F_{k}\right)=F_{k-1} \times{ }_{M} \bar{F}_{k}$ is the so called Mironian of F_{k}. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times M T^{*} M . \mathcal{T} L$ is the Tulczyjew differential and λ_{L} the Legendre relation.

What replaces Lie algebroids in this version of higher Lagrangian theory are linearizations of graded bundles equipped with weighted Lie algebroid structures (weighted Lie algebroids on symmetric GrL-bundles).

Lagrangian framework for graded bundles

A weighted Lie algebroid on $\mathrm{I}\left(F_{k}\right)$ gives the Tulczyjew triple

Here, the diagram consists of relations,
and $\operatorname{Mi}\left(F_{k}\right)=F_{k-1} \times M \bar{F}_{k}$ is the so called Mironian of F_{k}. In t
case, $\mathrm{Mi}\left(T^{k} M\right)=T^{k-1} M \times M T^{*} M . T L$ is the Tulczyjew differen
λ_{L} the Legendre relation.
What replaces Lie algebroids in this version of higher Lagrangia
are linearizations of graded bundles equipped with weighted Lie
structures (weighted Lie algebroids on symmetric GrL-bundles).

Lagrangian framework for graded bundles

A weighted Lie algebroid on $\mathrm{I}\left(F_{k}\right)$ gives the Tulczyjew triple

Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} \mathrm{I}\left(F_{k}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)=F_{k-1} \times{ }_{M} F_{k}$ is the so called Mironian of F_{k}. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times_{M} T^{*} M . \mathcal{T} L$ is the Tulczyjew differential and λ_{L} the Legendre relation.

What replaces Lie algebroids in this version of higher Lagrangian theory are linearizations of graded bundles equipped with weighted Lie algebroid structures (weighted Lie algebroids on symmetric GrL-bundles).

Lagrangian framework for graded bundles

A weighted Lie algebroid on $\mathrm{I}\left(F_{k}\right)$ gives the Tulczyjew triple

Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \triangleright \mathrm{~T}^{*} \mathrm{I}\left(F_{k}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)=F_{k-1} \times_{M} \bar{F}_{k}$ is the so called Mironian of F_{k}. cse

What replaces Lie algebroids in this version of higher Lagrangian theory are linearizations of graded bundles equipped with weighted Lie algebroid structures (weighted Lie algebroids on symmetric GrL-bundles).

Lagrangian framework for graded bundles

A weighted Lie algebroid on $\mathrm{I}\left(F_{k}\right)$ gives the Tulczyjew triple

Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \triangleright \mathrm{~T}^{*} \mathrm{I}\left(F_{k}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)=F_{k-1} \times_{M} \bar{F}_{k}$ is the so called Mironian of F_{k}. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times_{M} T^{*} M$.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $\mathrm{I}\left(F_{k}\right)$ gives the Tulczyjew triple

Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \triangleright \mathrm{~T}^{*} \mathrm{I}\left(F_{k}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)=F_{k-1} \times_{M} \bar{F}_{k}$ is the so called Mironian of F_{k}. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times_{M} T^{*} M . \mathcal{T} L$ is the Tulczyjew differential and λ_{L} the Legendre relation.

What replaces Lie algebroids in this version of higher Lagrangian theory are
structures (weighted Lie algebroids on symmetric GrL-bundles).

Lagrangian framework for graded bundles

A weighted Lie algebroid on $\mathrm{I}\left(F_{k}\right)$ gives the Tulczyjew triple

Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} \mathrm{I}\left(F_{k}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)=F_{k-1} \times_{M} \bar{F}_{k}$ is the so called Mironian of F_{k}. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times_{M} T^{*} M . \mathcal{T} L$ is the Tulczyjew differential and λ_{L} the Legendre relation.

What replaces Lie algebroids in this version of higher Lagrangian theory are linearizations of graded bundles equipped with weighted Lie algebroid structures (weighted Lie algebroids on symmetric GrL-bundles).

Example

Let g be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on g_{2} and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $I\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The vector bundle projection is $\tau(x, y, z)=x$ and the corresponding diagram looks like

The embedding $\iota: g_{2} \hookrightarrow I\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$. In coordinates $(x, y, z, \alpha, \beta, \gamma)$ on $\mathrm{T}^{*} \mathrm{I}\left(g_{2}\right)$, the phase relation $T^{*} \iota: T^{*} g_{2} \longrightarrow T^{*} \mid\left(g_{2}\right)$ relates $(x, z, \alpha+\beta, \gamma)$ with $(x, x, z, \alpha, \beta, \gamma)$.

Example

Let g be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on g_{2} and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $I\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The vector bundle projection is $\tau(x, y, z)=x$ and the corresponding diagram looks like

The embedding $\iota: g_{2} \hookrightarrow I\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$. In coordinates $(x, y, z, \alpha, \beta, \gamma)$ on $\mathrm{T}^{*} \mathrm{I}\left(g_{2}\right)$, the phase relation

Example

Let g be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on g_{2} and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $I\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The vector bundle projection is $\tau(x, y, z)=x$ and the corresponding diagram looks like

The embedding $\iota: g_{2} \hookrightarrow I\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$. In coordinates $(x, y, z, \alpha, \beta, \gamma)$ on $\mathrm{T}^{*} \mathrm{I}\left(g_{2}\right)$, the phase relation

Example

Let g be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on g_{2} and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $\mid\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The vector bundle projection is $\tau(x, y, z)=x$ and the corresponding diagram looks like

The embedding $\iota: g_{2} \hookrightarrow \mathrm{I}\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$.

Example

Let g be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on g_{2} and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $\mid\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The vector bundle projection is $\tau(x, y, z)=x$ and the corresponding diagram looks like

The embedding $\iota: g_{2} \hookrightarrow I\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$. In coordinates $(x, y, z, \alpha, \beta, \gamma)$ on $\mathrm{T}^{*} \mathrm{I}\left(g_{2}\right)$, the phase relation $\mathrm{T}^{*} \iota: \mathrm{T}^{*} g_{2} \longrightarrow \mathrm{~T}^{*} \mathrm{I}\left(g_{2}\right)$ relates $(x, z, \alpha+\beta, \gamma)$ with $(x, x, z, \alpha, \beta, \gamma)$.

Example continued

The Lie algebroid structure $\varepsilon: T^{*} \mid\left(g_{2}\right) \rightarrow T I^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \operatorname{ad}_{y}^{*} \beta, \alpha\right),
$$

so $\hat{\varepsilon}$ relates $(x, z, \alpha+\beta, \gamma)$ with $\left(x, \beta, \gamma, z, \operatorname{ad}_{x}^{*} \beta, \alpha\right)$.
Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T} L: g_{2} \rightarrow \mathrm{I}^{*}\left(g_{2}\right)$ therefore reads

$$
\mathcal{T} L(x, z)=\left\{\left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \operatorname{ad}_{x}^{*} \beta, \alpha\right): \alpha+\beta=\frac{\partial L}{\partial x}(x, z)\right\}
$$

Hence, for the phase dynamics,

$$
z=\dot{x}, \quad \operatorname{ad}_{x}^{*} \beta=\dot{\beta}, \quad \alpha=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)
$$

and

$$
\beta=\frac{\partial L}{\partial x}(x, z)-\frac{d}{d t}\left(\frac{\partial L}{\partial z}(x, z)\right)
$$

Example continued

The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} \mathrm{I}\left(g_{2}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \operatorname{ad}_{y}^{*} \beta, \alpha\right)
$$

so $\hat{\varepsilon}$ relates $(x, z, \alpha+\beta, \gamma)$ with $\left(x, \beta, \gamma, z, \operatorname{ad}_{x}^{*} \beta, \alpha\right)$.
Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T} L: g_{2} \rightarrow \mathrm{I}^{*}\left(g_{2}\right)$ therefore reads

Hence, for the phase dynamics,

Example continued

The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} \mathrm{I}\left(g_{2}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \operatorname{ad}_{y}^{*} \beta, \alpha\right)
$$

so $\hat{\varepsilon}$ relates $(x, z, \alpha+\beta, \gamma)$ with $\left(x, \beta, \gamma, z, \operatorname{ad}_{x}^{*} \beta, \alpha\right)$.
Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T} L: g_{2} \rightarrow \mathrm{~T} \mathrm{I}^{*}\left(g_{2}\right)$ therefore reads

$$
\mathcal{T} L(x, z)=\left\{\left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \operatorname{ad}_{x}^{*} \beta, \alpha\right): \alpha+\beta=\frac{\partial L}{\partial x}(x, z)\right\}
$$

Hence, for the phase dynamics,

Example continued

The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} \mathrm{I}\left(g_{2}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \operatorname{ad}_{y}^{*} \beta, \alpha\right)
$$

so $\hat{\varepsilon}$ relates $(x, z, \alpha+\beta, \gamma)$ with $\left(x, \beta, \gamma, z, \operatorname{ad}_{x}^{*} \beta, \alpha\right)$.
Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T} L: g_{2} \rightarrow \mathrm{I}^{*}\left(g_{2}\right)$ therefore reads

$$
\mathcal{T} L(x, z)=\left\{\left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \operatorname{ad}_{x}^{*} \beta, \alpha\right): \alpha+\beta=\frac{\partial L}{\partial x}(x, z)\right\}
$$

Hence, for the phase dynamics,

Example continued

The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} \mathrm{I}\left(g_{2}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \operatorname{ad}_{y}^{*} \beta, \alpha\right)
$$

so $\hat{\varepsilon}$ relates $(x, z, \alpha+\beta, \gamma)$ with $\left(x, \beta, \gamma, z, \operatorname{ad}_{x}^{*} \beta, \alpha\right)$.
Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T} L: g_{2} \rightarrow \mathrm{I}^{*}\left(g_{2}\right)$ therefore reads

$$
\mathcal{T} L(x, z)=\left\{\left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \operatorname{ad}_{x}^{*} \beta, \alpha\right): \alpha+\beta=\frac{\partial L}{\partial x}(x, z)\right\}
$$

Hence, for the phase dynamics,

$$
z=\dot{x}, \quad \operatorname{ad}_{x}^{*} \beta=\dot{\beta}, \quad \alpha=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)
$$

Example continued

The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} \mathrm{I}\left(g_{2}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \operatorname{ad}_{y}^{*} \beta, \alpha\right)
$$

so $\hat{\varepsilon}$ relates $(x, z, \alpha+\beta, \gamma)$ with $\left(x, \beta, \gamma, z, \operatorname{ad}_{x}^{*} \beta, \alpha\right)$.
Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T} L: g_{2} \rightarrow \mathrm{~T} \mathrm{I}^{*}\left(g_{2}\right)$ therefore reads

$$
\mathcal{T} L(x, z)=\left\{\left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \operatorname{ad}_{x}^{*} \beta, \alpha\right): \alpha+\beta=\frac{\partial L}{\partial x}(x, z)\right\}
$$

Hence, for the phase dynamics,

$$
z=\dot{x}, \quad \operatorname{ad}_{x}^{*} \beta=\dot{\beta}, \quad \alpha=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)
$$

and

$$
\beta=\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right) .
$$

Higher Euler-Lagrange equations

This leads to the Euler-Lagrange equations on g_{2} :
$\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)$
These equations are second order and induce the Euler-Lagrange equations on g which are of order 3 :
$\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)$
For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on $g\left(c_{i j}^{k}\right.$ are structure constants, no summation convention):

The latter can be viewed as 'higher Euler equations'

Higher Euler-Lagrange equations

This leads to the Euler-Lagrange equations on g_{2} :

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on g ($c_{i j}^{k}$ are structure constants, no summation convention):

The latter can be viewed as 'higher Euler equations'

Higher Euler-Lagrange equations

This leads to the Euler-Lagrange equations on g_{2} :

$$
\dot{x}=z,
$$

$\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)$.
These equations are second order and induce the Euler-Lagrange equations on g which are of order 3 :

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on g ($c_{i j}^{k}$ are structure constants, no summation convention)

The latter can be viewed as 'higher Euler equations'

Higher Euler-Lagrange equations

This leads to the Euler-Lagrange equations on g_{2} :

$$
\begin{aligned}
\dot{x} & =z \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)^{2} & =\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) .
\end{aligned}
$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on g ($c_{i j}^{k}$ are structure constants, no summation convention)

The latter can be viewed as 'higher Euler equations'

Higher Euler-Lagrange equations

This leads to the Euler-Lagrange equations on g_{2} :

$$
\dot{x}=z
$$

$\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)$.
These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right) .
$$

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on g ($c_{i j}^{k}$ are structure constants, no summation convention):

Higher Euler-Lagrange equations

This leads to the Euler-Lagrange equations on g_{2} :

$$
\begin{aligned}
\dot{x} & =z \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) & =\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) .
\end{aligned}
$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right) .
$$

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on $g\left(c_{i j}^{k}\right.$ are structure constants, no summation convention):

$$
I_{j} \ddot{x}^{j}=\sum_{i, k} c_{i j}^{k} I_{k} x^{i} \ddot{x}^{k} .
$$

The latter can be viewed as 'higher Euler equations'

Higher Euler-Lagrange equations

This leads to the Euler-Lagrange equations on g_{2} :

$$
\begin{aligned}
\dot{x} & =z \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) & =\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) .
\end{aligned}
$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right) .
$$

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on g ($c_{i j}^{k}$ are structure constants, no summation convention):

$$
I_{j} \ddot{x}^{j}=\sum_{i, k} c_{i j}^{k} I_{k} x^{i} \ddot{x}^{k} .
$$

The latter can be viewed as 'higher Euler equations'.

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on

 $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$. The relevant diagram here is

Here, $\mathrm{I}\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ \operatorname{rod} L\left(A^{k}(\mathcal{G})\right)$, and λ_{L} is the Legendre relation.

Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

$$
A^{k}(\mathcal{G})=\mathrm{T}^{k}(\mathcal{G}) / \mathcal{G} \quad \text { and } \quad \mathrm{I}\left(A^{k}(\mathcal{G})\right)=\mathrm{T}^{k-1}(\mathcal{G}) / \mathcal{G}
$$

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$.

The relevant diagram here is

Here, $\mathrm{I}\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ \operatorname{rod} L\left(A^{k}(\mathcal{G})\right)$, and λ_{L} is the Legendre relation.

Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$.

Here, $\mathrm{I}\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ \operatorname{rod} L\left(A^{k}(\mathcal{G})\right)$, and λ_{L} is the Legendre relation.

Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$. The relevant diagram here is

Here, I $\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ r \circ d L\left(A^{k}(\mathcal{G})\right)$, and λ_{L} is the Legendre relation.

Note that we deal with reductions: in the case C is a Lie group,

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$. The relevant diagram here is

Here, $\mathrm{I}\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ r \circ d L\left(A^{k}(\mathcal{G})\right)$, and λ_{L} is the Legendre relation.

Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$. The relevant diagram here is

Here, $\mathrm{I}\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ r \circ \mathrm{~d} L\left(A^{k}(\mathcal{G})\right)$, and λ_{L} is the Legendre relation.
Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

$$
A^{k}(\mathcal{G})=\mathrm{T}^{k}(\mathcal{G}) / \mathcal{G} \quad \text { and } \quad \mathrm{I}\left(A^{k}(\mathcal{G})\right)=\mathrm{TT}^{k-1}(\mathcal{G}) / \mathcal{G}
$$

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^{A} as base coordinates, and y_{i}^{a} as fibre coordinates of degree $i=1, \ldots, k$ in A^{k}, extended by the appropriate momenta π_{b}^{J} of degree $j=1, \ldots, k$ in $I^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

which we recognise as the Jacobi-Ostrogradski momenta.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^{A} as base coordinates, and y_{i}^{a} as fibre coordinates of degree $i=1, \ldots, k$ in A^{k}, extended by the appropriate momenta π_{b}^{J} of degree $j=1, \ldots, k$ in $I^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

which we recognise as the Jacobi-Ostrogradski momenta.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^{A} as base coordinates, and y_{i}^{a} as fibre coordinates of degree $i=1, \ldots, k$ in A^{k}, degree $j=1, \ldots, k$ in $l^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!)

which we recognise as the Jacobi-Ostrogradski momenta.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^{A} as base coordinates, and y_{i}^{a} as fibre coordinates of degree $i=1, \ldots, k$ in A^{k}, extended by the appropriate momenta π_{b}^{j} of degree $j=1, \ldots, k$ in $I^{*}\left(A^{k}\right)$, we get the equations for the Legendre
relation in the form (no Lie algebroid structure appears!)

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^{A} as base coordinates, and y_{i}^{A} as fibre coordinates of degree $i=1, \ldots, k$ in A^{k}, extended by the appropriate momenta π_{b}^{j} of degree $j=1, \ldots, k$ in $l^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^{A} as base coordinates, and y_{i}^{a} as fibre coordinates of degree $i=1, \ldots, k$ in A^{k}, extended by the appropriate momenta π_{b}^{j} of degree $j=1, \ldots, k$ in $l^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^{A} as base coordinates, and y_{i}^{a} as fibre coordinates of degree $i=1, \ldots, k$ in A^{k}, extended by the appropriate momenta π_{b}^{j} of degree $j=1, \ldots, k$ in $I^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$
\begin{aligned}
& k \pi_{a}^{1}=\frac{\partial L}{\partial y_{k}^{a}}, \\
& (k-1) \pi_{b}^{2}=\frac{\partial L}{\partial y_{k-1}^{b}}-\frac{1}{k} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{k}^{b}}\right), \\
& \vdots \\
& \pi_{d}^{k}=\frac{\partial L}{\partial y_{1}^{d}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{d}}\right)+\frac{1}{3!} \frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial y_{3}^{d}}\right)-\cdots \\
& +(-1)^{k} \frac{1}{(k-1)!} \frac{d^{k-2}}{d t^{k-2}}\left(\frac{\partial L}{\partial y_{k-1}^{d}}\right)-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{d}}\right),
\end{aligned}
$$

Which we recognise as the Jacobi-Ostrogradski momenta.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^{A} as base coordinates, and y_{i}^{a} as fibre coordinates of degree $i=1, \ldots, k$ in A^{k}, extended by the appropriate momenta π_{b}^{j} of degree $j=1, \ldots, k$ in $l^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$
\begin{aligned}
& k \pi_{a}^{1}=\frac{\partial L}{\partial y_{k}^{a}}, \\
& (k-1) \pi_{b}^{2}=\frac{\partial L}{\partial y_{k-1}^{b}}-\frac{1}{k} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{k}^{b}}\right), \\
& \vdots \\
& \pi_{d}^{k}=\frac{\partial L}{\partial y_{1}^{d}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{d}}\right)+\frac{1}{3!} \frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial y_{3}^{d}}\right)-\cdots \\
& +(-1)^{k} \frac{1}{(k-1)!} \frac{d^{k-2}}{d t^{k-2}}\left(\frac{\partial L}{\partial y_{k-1}^{d}}\right)-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{d}}\right),
\end{aligned}
$$

which we recognise as the Jacobi-Ostrogradski momenta.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k},
$$

where ρ_{a}^{A} and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

$$
\begin{gathered}
\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}= \\
\left(\delta_{a}^{c} \frac{d}{d t}-y_{1}^{b} C_{b a}^{c}(x)\right)\left(\frac{\partial L}{\partial y_{1}^{c}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{c}}\right) \cdots-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{c}}\right)\right)
\end{gathered}
$$

which we define to be the k-th order Euler-Lagrange equations on $A(\mathcal{G})$.
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where ρ_{a}^{A} and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

which we define to be the k-th order Euler-Lagrange equations on $A(\mathcal{G})$
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where ρ_{a}^{A} and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$.

which we define to be the k-th order Euler-Lagrange equations on $A(\mathcal{G})$.
The above higher order algebroid Fuler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where ρ_{a}^{A} and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

$$
\begin{gathered}
\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}= \\
\left(\delta_{a}^{c} \frac{d}{d t}-y_{1}^{b} C_{b a}^{c}(x)\right)\left(\frac{\partial L}{\partial y_{1}^{c}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{c}}\right) \cdots-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{c}}\right)\right)
\end{gathered}
$$

which we define to be the k-th order Euler-Lagrange equations on $A(\mathcal{G})$
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where ρ_{a}^{A} and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

$$
\begin{gathered}
\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}= \\
\left(\delta_{a}^{c} \frac{d}{d t}-y_{1}^{b} C_{b a}^{c}(x)\right)\left(\frac{\partial L}{\partial y_{1}^{c}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{c}}\right) \cdots-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{c}}\right)\right)
\end{gathered}
$$

which we define to be the k -th order Euler-Lagrange equations on $A(\mathcal{G})$.

> The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k},
$$

where ρ_{a}^{A} and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

$$
\begin{gathered}
\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}= \\
\left(\delta_{a}^{c} \frac{d}{d t}-y_{1}^{b} C_{b a}^{c}(x)\right)\left(\frac{\partial L}{\partial y_{1}^{c}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{c}}\right) \cdots-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{c}}\right)\right)
\end{gathered}
$$

which we define to be the k -th order Euler-Lagrange equations on $A(\mathcal{G})$.
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where ρ_{a}^{A} and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

$$
\begin{gathered}
\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}= \\
\left(\delta_{a}^{c} \frac{d}{d t}-y_{1}^{b} C_{b a}^{c}(x)\right)\left(\frac{\partial L}{\partial y_{1}^{c}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{c}}\right) \cdots-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{c}}\right)\right)
\end{gathered}
$$

which we define to be the k -th order Euler-Lagrange equations on $A(\mathcal{G})$.
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

The Tulczyjew triple for strings

Using the canonical multisymplectic structure on $\wedge^{2} T^{*} M$, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

The way of obtaining the implicit phase dynamics \mathcal{D}, as a submanifold of $\wedge^{2} T \wedge^{2} T^{*} M$, from a Lagrangian $L: \wedge^{2} T M \rightarrow \mathbb{R}$ (or from a Hamiltonian $\left.H: \Lambda^{2} T^{*} M \rightarrow \mathbb{R}\right)$ is now standard: $\mathcal{D}=\mathcal{T} L\left(\Lambda^{2} T M\right)$.

The Tulczyjew triple for strings

Using the canonical multisymplectic structure on $\wedge^{2} T^{*} M$, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

The Tulczyjew triple for strings

Using the canonical multisymplectic structure on $\wedge^{2} T^{*} M$, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

D

The way of obtaining the implicit phase dynamics \mathcal{D}, as a submanifold of
\square
$\left.H: \Lambda^{2} T^{*} M \rightarrow \mathbb{R}\right)$ is now standard: $D=T L\left(\Lambda^{2} T M\right)$

The Tulczyjew triple for strings

Using the canonical multisymplectic structure on $\wedge^{2} T^{*} M$, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

D

The way of obtaining the implicit phase dynamics \mathcal{D}, as a submanifold of $\wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M$, from a Lagrangian $L: \wedge^{2} T M \rightarrow \mathbb{R}$ (or from a Hamiltonian $\left.H: \wedge^{2} T^{*} M \rightarrow \mathbb{R}\right)$ is now standard: $\mathcal{D}=\mathcal{T} L\left(\wedge^{2} T M\right)$.

The Euler-Lagrange equations

A surface $S:(t, s) \mapsto\left(x^{\sigma}(t, s)\right)$ in M satisfies the Euler-Lagrange equations if the image by $d L$ of its prolongation to $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}=\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t}\right)
$$

is α_{M}^{2}-related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^{2} T^{*} M$ to $\wedge^{2} T \wedge^{2} T^{*} M$. In coordinates, the Euler-Lagrange equations read

$$
\begin{aligned}
\dot{x}^{\mu \nu} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t} \\
\frac{\partial L}{\partial x^{\sigma}} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial}{\partial s}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right)-\frac{\partial x^{\mu}}{\partial s} \frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right)
\end{aligned}
$$

The Euler-Lagrange equations

A surface $S:(t, s) \mapsto\left(x^{\sigma}(t, s)\right)$ in M satisfies the Euler-Lagrange equations if the image by $d L$ of its prolongation to $\wedge^{2} T M$,

is $\alpha_{M^{-}}^{2}$-related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^{2} T^{*} M$ to $\wedge^{2} T \wedge^{2} T^{*} M$.
In coordinates, the Euler-Lagrange equations read

The Euler-Lagrange equations

A surface $S:(t, s) \mapsto\left(x^{\sigma}(t, s)\right)$ in M satisfies the Euler-Lagrange equations if the image by $d L$ of its prolongation to $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}=\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t}\right)
$$

 living in the phase space $\wedge^{2} T^{*} M$ to $\wedge^{2} T \wedge^{2} T^{*} M$.
In coordinates, the Euler-Lagrange equations read

The Euler-Lagrange equations

A surface $S:(t, s) \mapsto\left(x^{\sigma}(t, s)\right)$ in M satisfies the Euler-Lagrange equations if the image by $d L$ of its prolongation to $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}=\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t}\right)
$$

is $\alpha_{M^{-}}^{2}$-related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^{2} T^{*} M$ to $\wedge^{2} T \wedge^{2} T^{*} M$.
In coordinates, the Euler-Lagrange equations read

The Euler-Lagrange equations

A surface $S:(t, s) \mapsto\left(x^{\sigma}(t, s)\right)$ in M satisfies the Euler-Lagrange equations if the image by $d L$ of its prolongation to $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}=\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t}\right)
$$

is $\alpha_{M^{-}}^{2}$-related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^{2} T^{*} M$ to $\wedge^{2} T \wedge^{2} T^{*} M$. In coordinates, the Euler-Lagrange equations read

$$
\begin{aligned}
\dot{x}^{\mu \nu} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t} \\
\frac{\partial L}{\partial x^{\sigma}} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial}{\partial s}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right)-\frac{\partial x^{\mu}}{\partial s} \frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right) .
\end{aligned}
$$

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange :

In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0 .
$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the Nambu-Goto Lągrangiann $\bar{\equiv}$,

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange

In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0 .
$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the Nambu-Goto Lągrancian

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange

In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0 .
$$

Starting with a Lorentz metric, we can obtain analogously the

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange

In another form:

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the Nambu-Goto Lągrancienn

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange :

In another form:

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange :

$$
\frac{\partial}{\partial x}\left(\frac{z_{x}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{z_{y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)=0
$$

In another form:

Starting with a Lorentz metric, we can obtain analogously the

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange :

$$
\frac{\partial}{\partial x}\left(\frac{z_{x}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{z_{y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)=0
$$

In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0
$$

Starting with a Lorentz metric, we can obtain analogously the

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange :

$$
\frac{\partial}{\partial x}\left(\frac{z_{x}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{z_{y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)=0
$$

In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0
$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the Nambu-Goto Lagrangian.

THANK YOU FOR YOUR ATTENTION!

