Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Boian Lazov and Stoytcho Yazadjiev

Varna, 2017

1 Motivation

3 Auxiliary results

4 Main theorems

3

(4回) 4 注) 4 注)

Motivation		

1 Motivation

- 2 Preliminaries
- **3** Auxiliary results
- 4 Main theorems

э

<ロ> (四) (四) (日) (日) (日)

Motivation		
0000		

What is a photon sphere?

Any null geodesic initially tangent to the photon sphere remains tangent to it.

(*) *) *) *)

- T

Motivation		
0000		

What is a photon sphere?

- Region where light can be confined to closed orbits.
- Characteristic of non-rotating black holes and compact objects with radii smaller than 3M.
- Closely connected to gravitational lensing. Presence of a photon sphere leads to relativistic images.
- Astrophysically timelike hypersurface on which the light bending angle is unboundedly large.

伺 ト イヨト イヨト

Motivation		
0000		

Mathematical properties

- In static spacetimes the lapse function is constant on the photon sphere.
- Photon spheres are totally umbilic hypersurfaces with constant mean and scalar curvatures as well as constant surface gravity.
- Resemblance to event horizons, which leads to the question of classification of solutions using photon spheres.

Motivation		
0000		

The problem

- Richer class of solutions possessing a photon sphere, compared to the one with an event horizon (neutron stars with radii smaller than 3M have a photon sphere, but don't have an event horizon).
- Uniqueness theorems have been proven for the static asymptotically flat solutions to the Einstein equations in vacuum, the Einstein-scalar field equations and the Einstein-Maxwell equations possessing a photon sphere.
- Naturally the next question is the classification of the static solutions to the Einstein-Maxwell-dilaton field equations.

→ □ → → □ →

Preliminaries		

1 Motivation

3 Auxiliary results

4 Main theorems

3

<ロ> (四) (四) (日) (日) (日)

Preliminaries		
•00000		

Equations and staticity

We start with the standard Einstein-Maxwell-dilaton equations,

$$\begin{split} \mathfrak{R}_{\mu\nu} &= 2\,^{\mathfrak{g}} \nabla_{\mu} \varphi^{\,\mathfrak{g}} \nabla_{\nu} \varphi + 2e^{-2\alpha\varphi} \left(F_{\mu\beta} F_{\nu}{}^{\beta} - \frac{\mathfrak{g}_{\mu\nu}}{4} F_{\beta\gamma} F^{\beta\gamma} \right), \\ \mathfrak{g} \nabla_{[\beta} F_{\mu\nu]} &= 0, \\ \mathfrak{g} \nabla_{\beta} \left(e^{-2\alpha\varphi} F^{\beta\mu} \right) &= 0, \\ \mathfrak{g} \nabla_{\beta} \,\mathfrak{g} \nabla^{\beta} \varphi &= -\frac{\alpha}{2} e^{-2\alpha\varphi} F_{\mu\nu} F^{\mu\nu}, \end{split}$$

and define staticity of the Maxwell and dilaton field in the usual way,

$$\mathcal{L}_{\xi}F = 0,$$
$$\mathcal{L}_{\xi}\varphi = 0.$$

For static spacetimes we can write the spacetime and the metric in the form

$$\mathfrak{L}^4 = \mathbb{R} \times M^3, \ \mathfrak{g} = -N^2 \mathrm{d}t^2 + g.$$

(*) = (*) = (*)

	Preliminaries			
0000	00000	000	000000	

Photon sphere and electric potential Φ

The photon sphere P^3 is defined to be the photon surface of constant N.

We modify this with additional properties: the one-forms $\iota_\xi F$ and $\mathrm{d}\varphi$ are normal to $P^3.$

We will use later the electric field one-form E and the electric potential $\Phi,$ defined in the usual way:

$$E = -\iota_{\xi} F, \quad \mathrm{d}\Phi = E.$$

With this and considering the purely electric case, where $\iota_\xi\star F=0,\ F$ is given explicitly by

$$F = -N^{-2}\xi \wedge \mathrm{d}\Phi.$$

・ロン ・回と ・ヨン ・ヨン

Preliminaries		
00000		

Asymptotic flatness

For asymtotically flat spacetimes the following expansions for the spatial metric and lapse function hold:

$$g = \delta + O(r^{-1}), \quad N = 1 - \frac{M}{r} + O(r^{-2}).$$

Next, the asymptotic expansions for the dilaton field φ and the electric potential Φ are given by the following:

$$\begin{split} \varphi &= \varphi_\infty - \frac{q}{r} + O(r^{-2}), \\ \Phi &= \Phi_\infty + \frac{Q}{r} + O(r^{-2}), \end{split}$$

where we set $\varphi_{\infty} = 0$ and $\Phi_{\infty} = 0$.

Preliminaries		
000000		

Geometric picture

 P^3 is the outermost photon sphere.

 M^3 is a time slice.

 $M_{\rm ext}^3$ is the spatial part of the spacetime \mathfrak{L}^4 outside of the photon sphere. We assume that N regularly foliates $M_{\rm ext}^3$.

 Σ is the intersection of P^3 and M^3 , and is the inner boundary of M_{ext}^3 . It is a level set of N by definition. All level sets of N are topological spheres as a consequence of our assumption.

Preliminaries		
000000		

Reduced field equations

The reduced Einstein-Maxwell-dilaton equations become:

$$\begin{split} {}^{g}\!\Delta N &= N^{-1} e^{-2\alpha\varphi} \, {}^{g}\!\nabla_{i} \Phi \, {}^{g}\!\nabla^{i}\Phi, \\ {}^{g}\!R_{ij} &= 2 \, {}^{g}\!\nabla_{i}\varphi \, {}^{g}\!\nabla_{j}\varphi + N^{-1} \, {}^{g}\!\nabla_{i} \, {}^{g}\!\nabla_{j}N \\ &\quad + N^{-2} e^{-2\alpha\varphi} (g_{ij} \, {}^{g}\!\nabla_{k} \Phi \, {}^{g}\!\nabla^{k} \Phi - 2 \, {}^{g}\!\nabla_{i} \Phi \, {}^{g}\!\nabla_{j}\Phi), \\ {}^{g}\!\nabla_{i} (N^{-1} e^{-2\alpha\varphi} \, {}^{g}\!\nabla^{i}\Phi) &= 0, \\ {}^{g}\!\nabla_{i} (N \, {}^{g}\!\nabla^{i}\varphi) &= \alpha N^{-1} e^{-2\alpha\varphi} \, {}^{g}\!\nabla_{i} \Phi \, {}^{g}\!\nabla^{i}\Phi. \end{split}$$

э

<ロト <回ト < 回ト < 回ト

Preliminaries		
00000		

Mass, scalar charge and electric charge

Using the asymptotic expansions of the potentials, the electric charge is given by

$$Q = -\frac{1}{4\pi} \int_{\Sigma} N^{-1} e^{-2\alpha\varphi} \, {}^g \nabla^i \Phi \mathrm{d}\Sigma_i.$$

The mass and the dilaton charge are given by the following:

$$M = M_0 + \Phi_0 Q,$$

$$q = q_0 + \alpha \Phi_0 Q.$$

On the photon sphere we have:

$$\begin{split} M_0 &= \frac{1}{4\pi} \int_{\Sigma} {}^g \nabla^i N \mathrm{d}\Sigma_i, \\ q_0 &= \frac{1}{4\pi} \int_{\Sigma} N {}^g \nabla^i \varphi \mathrm{d}\Sigma_i. \end{split}$$

4 E 6 4 E 6

	Auxiliary results	

1 Motivation

3 Auxiliary results

4 Main theorems

6 Conclusion

3

<ロ> (四) (四) (日) (日) (日)

	Auxiliary results	
	000	

Dependence between the potentials $N\text{, }\varphi$ and Φ

Using a new metric $\gamma_{ij}=N^2g_{ij}$ on $M^3_{\rm ext}$, and introducing new functions $u,\,U,\,\Psi$ and $\hat{\Phi},$ such that

$$N^2 = e^{2u}, \quad U = u + \alpha \varphi, \quad \Psi = \varphi - \alpha u, \quad \hat{\Phi} = \sqrt{1 + \alpha^2} \Phi,$$

we can rewrite the field equations in the following form:

$$\begin{split} {}^{\gamma}\!R_{ij} &= \frac{1}{1+\alpha^2} (2D_i U D_j U - 2e^{-2U} D_i \hat{\Phi} D_j \hat{\Phi} + 2D_i \Psi D_j \Psi), \\ D_i D^i U &= e^{-2U} D_i \hat{\Phi} D^i \hat{\Phi}, \\ D_i D^i \Psi &= 0, \\ D_i (e^{-2U} D^i \hat{\Phi}) &= 0. \end{split}$$

イロト イポト イヨト イヨト

	Auxiliary results	
	000	

Dependence between the potentials $N\text{, }\varphi$ and Φ

From those we can obtain a functional dependence between U and $\hat{\Phi}$,

$$e^{2U} - 1 - \hat{\Phi}^2 + \frac{2(M + \alpha q)}{Q_{\alpha}}\hat{\Phi} = 0,$$

where $Q_{\alpha} = \sqrt{1 + \alpha^2}Q$. Introducing yet another potential by

$$\mathrm{d}\zeta = e^{-2U}\mathrm{d}\hat{\Phi}, \quad \zeta_{\infty} = 0$$

we get another functional dependence,

$$(q_0 - \alpha M_0)\zeta - Q_\alpha \Psi = 0,$$

which finally reduces the EMD equations to

$$\gamma R_{ij} = \frac{2}{1+\alpha^2} \left(\frac{M^2+q^2}{Q^2}-1\right) D_i \zeta D_j \zeta,$$
$$D_i D^i \zeta = 0.$$

イロン イボン イヨン イヨン

	Auxiliary results	
	000	

CMC and CSC; some useful relations

As a photon sphere, ${\cal P}^3$ is totally umbilic, i. e. its second fundamental form is pure trace.

Codazzi for $P^3 \hookrightarrow \mathfrak{L}^4$ and EMD $\Longrightarrow P^3$ has CMC.

Contracted Gauss for $P^3 \hookrightarrow \mathfrak{L}^4$, EMD, Codazzi for $\Sigma \hookrightarrow M^3$ and dependence between N, φ and $\Phi \Longrightarrow P^3$ has CSC.

We also obtain the following equalities to be used later in the proof:

$$N_{0} = \frac{1}{4\pi} e^{-2\alpha\varphi_{0}} N_{0}^{-1} E_{\nu}^{2} A_{\Sigma} - \frac{1}{4\pi} N_{0} ({}^{\mathfrak{g}} \nabla_{\nu} \varphi)^{2} A_{\Sigma} + \frac{3}{8\pi} H[\nu(N)]_{0} A_{\Sigma},$$

$$2[\nu(N)]_{0} = N_{0} H.$$

・ロン ・四 と ・ ヨ と ・ ヨ と …

	Main theorems	

1 Motivation

3 Auxiliary results

4 Main theorems

6 Conclusion

э

<ロ> (四) (四) (日) (日) (日)

	Main theorems	
	●000000	

Theorem 1

Let $(\mathfrak{L}^4_{ext},\mathfrak{g},F,\varphi)$ be a static and asymptotically flat spacetime with

given mass M, electric charge Q and dilaton charge q, satisfying the

Einstein-Maxwell-dilaton equations and possessing a non-extremal photon

sphere (i. e. $M^2 + q^2 - Q^2 \neq 0$) as an inner boundary of \mathfrak{L}^4_{ext} . Assume

that the lapse function regularly foliates $\mathfrak{L}^4_{ext}.$ Then $(\mathfrak{L}^4_{ext},\mathfrak{g},F,\varphi)$ is

spherically symmetric.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

	Main theorems	
	000000	

Outline of the proof – case 1

Here $M^2 + q^2 > Q^2$ and we consider the potential $\lambda = \sqrt{\left(\frac{M^2 + q^2}{Q^2} - 1\right)\frac{1}{1 + \alpha^2}}\zeta$ and the following inequalities:

$$\int_{M_{ext}^3} D^i \left[\Omega^{-1} \left(\Gamma D_i \chi - \chi D_i \Gamma \right) \right] \sqrt{\gamma} \mathrm{d}^3 x \ge 0$$

and

$$\int_{M_{ext}^3} D^i \left(\Omega^{-1} D_i \chi \right) \sqrt{\gamma} \mathrm{d}^3 x \ge \int_{M_{ext}^3} D^i \left[\Omega^{-1} \left(\Gamma D_i \chi - \chi D_i \Gamma \right) \right] \sqrt{\gamma} \mathrm{d}^3 x,$$

where
$$\chi = \left(\gamma^{ij}D_i\Gamma D_j\Gamma\right)^{\frac{1}{4}}$$
, $\Gamma = -\tanh(\lambda)$ and $\Omega = \frac{1}{\cosh^2(\lambda)}$.

We can show that these transform into an equality,

$$\left(\frac{d\ln(N)}{d\lambda}\right)_0 = -\frac{1}{2}\coth(\lambda_0).$$

イロト 不得 トイヨト イヨト

Motivation	Preliminaries	Auxiliary results	Main theorems	

Outline of the proof – case 1

This leads to a vanishing Bach tensor, i. e. $R(\gamma)_{ijk} = 0$, which means that $R(g)_{ijk} = 0$.

Finally, considering the surfaces of constant N in M^3 , $(\Sigma_N,\sigma) \hookrightarrow (M^3,g)$ we can write the spacetime metric in the form:

$$\mathfrak{g} = -N^2 \mathrm{d}t^2 + \rho^2 \mathrm{d}N^2 + \sigma_{AB} \mathrm{d}x^A \mathrm{d}x^B,$$

since N foliates $M_{\rm ext}^3$ regularly. Calculating $R(g)_{ijk}R(g)^{ijk}=0$ explicitly we can conclude that

$$h_{AB}^{\Sigma_N} = \frac{1}{2} H^{\Sigma_N} \sigma_{AB}, \quad \partial_A \rho = 0,$$

i. e. the space geometry is spherically symmetric.

イロト イポト イヨト イヨト

	Main theorems	
	000000	

Outline of the proof – case 2

Here
$$M^2 + q^2 < Q^2$$
 and we consider the potential $\lambda = \sqrt{\left(1 - \frac{M^2 + q^2}{Q^2}\right) \frac{1}{1 + \alpha^2}} \zeta.$

We use the same inequalities but with different functions Γ and $\Omega,$

$$\Gamma = -\tan(\lambda), \quad \Omega = \cos^{-2}(\lambda).$$

The two inequalities lead to an equality,

$$\left(\frac{d\ln(N)}{d\lambda}\right)_0 = -\frac{1}{2}\cot(\lambda_0).$$

The same arguments as in case 1 hold and the spacetime is again spherically symmetric.

・ 同 ト ・ ヨ ト ・ ヨ ト

	Main theorems	
	0000000	

Theorem 2

The second theorem gives an explicit classification of the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere. We can introduce a new parameter $M_{\alpha} = M + \alpha q$ and the following formula:

$$M^{2} + q^{2} - Q^{2} = \frac{1}{1 + \alpha^{2}} \left[M_{\alpha}^{2} - Q_{\alpha}^{2} + (q - \alpha M)^{2} \right].$$

We now consider 2 cases.

伺 と く ヨ と く ヨ と

	Main theorems	
	0000000	

Theorem 2 – case 1

Here $M^2 + q^2 > Q^2$. The dimensionally reduced field equations are

$$\gamma R_{ij} = 2D_i \lambda D_j \lambda,$$
$$D_i D^i \lambda = 0.$$

These can be solved for spherically symmetric space,

$$e^{2\lambda} = 1 - \frac{2\sqrt{M^2 + q^2 - Q^2}}{r},$$

$$\gamma_{ij} dx^i dx^j = dr^2 + e^{2\lambda} r^2 (d\theta^2 + \sin^2\theta d\phi^2).$$

The spacetime metric is thus

$$ds^2 = -N^2 dt^2 + N^{-2} \left[dr^2 + e^{2\lambda} r^2 (d\theta^2 + \sin^2\theta d\phi^2) \right]$$

and we can obtain explicit expressions (3 classes depending on $\frac{Q_{\alpha}^2}{M_{\alpha}^2}$) for N, φ and Φ , since we know λ .

イロト イポト イヨト イヨト

	Main theorems	
	000000	

Theorem 2 – case 2

Here $M^2 + q^2 < Q^2$. The dimensionally reduced field equations are

$$\gamma R_{ij} = -2D_i \lambda D_j \lambda,$$
$$D_i D^i \lambda = 0.$$

These can be solved for spherically symmetric space,

$$\begin{split} \lambda &= \arctan\left(\frac{\sqrt{Q^2 - M^2 - q^2}}{r}\right),\\ \gamma_{ij} &= dr^2 + (r^2 + Q^2 - M^2 - q^2)(d\theta^2 + \sin^2\theta d\phi^2). \end{split}$$

The spacetime metric is thus

$$ds^{2} = -N^{2}dt^{2} + N^{-2} \left[dr^{2} + (r^{2} + Q^{2} - M^{2} - q^{2})(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

and we can again obtain explicit expressions for $N,\,\varphi$ and $\Phi.$

・ロト ・ 同ト ・ ヨト ・ ヨト …

		Conclusion

1 Motivation

2 Preliminaries

3 Auxiliary results

A Main theorems

э

<ロ> (四) (四) (日) (日) (日)

		Conclusion ●O

Discussion

Assumptions:

The lapse function regularly foliates $M_{\rm ext}^3.$ In general this assumption cannot be easily dropped.

Some of what remains is:

Higher dimensional EMD gravitation and/or similar results for stationary spacetimes.

What else has been done:

Static spacetimes with conformal scalar field. Perturbative approach for the static vacuum case.

伺 と く ヨ と く ヨ と

		Conclusion
		00

Thank you for your attention!

The support by Sofia University Research Grant 80.10-30 is gratefully acknowledged.

→ □ → < □ →</p>