INDIVIDUAL ERGODIC THEOREMS IN SEMIFINITE VON NEUMANN ALGEBRAS

Vladimir Chilin, National University of Uzbekistan
vladimirchil@gmail.com
Semyon Litvinov, Pennsylvania State University-Hazleton snl2@psu.edu

XIX International Conference
Geometry, Integrability and Quantization June 2-7, Varna, Bulgaria

Classical Dunford-Schwartz pointwise ergodic theorem

Definition

Let (Ω, μ) be a measure space. A linear operator T on
$L^{1}(\Omega)+L^{\infty}(\Omega)$ is called a Dunford-Schwartz operator if

$$
\|T(f)\|_{\infty} \leq\|f\|_{\infty} \forall f \in L^{\infty}(\Omega) \text { and }\|T(f)\|_{1} \leq\|f\|_{1} \forall f \in L^{1}(\Omega) .
$$

Classical Dunford-Schwartz pointwise ergodic theorem

Definition

Let (Ω, μ) be a measure space. A linear operator T on
$L^{1}(\Omega)+L^{\infty}(\Omega)$ is called a Dunford-Schwartz operator if
$\|T(f)\|_{\infty} \leq\|f\|_{\infty} \forall f \in L^{\infty}(\Omega)$ and $\|T(f)\|_{1} \leq\|f\|_{1} \forall f \in L^{1}(\Omega)$.

Theorem

Let $T: L^{1}(\Omega)+L^{\infty}(\Omega) \rightarrow L^{1}(\Omega)+L^{\infty}(\Omega)$ be a Dunford-Schwartz operator, and let $f \in L^{p}(\Omega), 1 \leq p<\infty$. Then the Cesáro averages

$$
A_{n}(T, f)=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}(f), \quad n=1,2, \ldots
$$

converge μ-almost everywhere to some $\widehat{f} \in L^{p}(\Omega)$.

Overview

The first individual ergodic theorem for a semifinite von Neumann algebra (\mathcal{M}, τ) appeared in a seminal paper of Yeadon (J. London Math. Soc., 1977).

Overview

The first individual ergodic theorem for a semifinite von Neumann algebra (\mathcal{M}, τ) appeared in a seminal paper of Yeadon (J. London Math. Soc., 1977).
In that paper, it was proved that the Cesáro averages

$$
\begin{equation*}
A_{n}(T, x)=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}(x), \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

generated by a positive Dunford-Schwartz operator T defined on the space $L^{1}(\mathcal{M}, \tau)+\mathcal{M}$ converge bilaterally almost uniform (b.a.u.) (in Egorov's sence) for every $x \in L^{1}(\mathcal{M}, \tau)$.

Overview

There were two immediate outstanding problems associated with the result:
(P1) Can b.a.u. convergence $\left\|e\left(A_{n}(T, x)-\widehat{x}\right) e\right\|_{\infty} \rightarrow 0$, where e is a "big" projection in \mathcal{M}, be replaced by generally stronger almost uniform (a.u.) convergence: $\left\|\left(A_{n}(T, x)-\widehat{x}\right) e\right\|_{\infty} \rightarrow 0$?

Overview

There were two immediate outstanding problems associated with the result:
(P1) Can b.a.u. convergence $\left\|e\left(A_{n}(T, x)-\widehat{x}\right) e\right\|_{\infty} \rightarrow 0$, where e is a "big" projection in \mathcal{M}, be replaced by generally stronger almost uniform (a.u.) convergence: $\left\|\left(A_{n}(T, x)-\widehat{x}\right) e\right\|_{\infty} \rightarrow 0$?
(P2) If the trace τ is infinite, how far beyond $L^{1}(\mathcal{M}, \tau)$ inside $L^{1}(\mathcal{M}, \tau)+\mathcal{M}$ can one go for this convergence to hold?

Overview

There were two immediate outstanding problems associated with the result:
(P1) Can b.a.u. convergence $\left\|e\left(A_{n}(T, x)-\widehat{x}\right) e\right\|_{\infty} \rightarrow 0$, where e is a "big" projection in \mathcal{M}, be replaced by generally stronger almost uniform (a.u.) convergence: $\left\|\left(A_{n}(T, x)-\widehat{x}\right) e\right\|_{\infty} \rightarrow 0$?
(P2) If the trace τ is infinite, how far beyond $L^{1}(\mathcal{M}, \tau)$ inside $L^{1}(\mathcal{M}, \tau)+\mathcal{M}$ can one go for this convergence to hold?
These were partially answered by Junge and Xu (J. AMS, 2007), where it was shown that for $1<p<2$ we have b.a.u. convergence and if $2 \leq p<\infty$ the averages converge a.u.

Overview

There were two immediate outstanding problems associated with the result:
(P1) Can b.a.u. convergence $\left\|e\left(A_{n}(T, x)-\widehat{x}\right) e\right\|_{\infty} \rightarrow 0$, where e is a "big" projection in \mathcal{M}, be replaced by generally stronger almost uniform (a.u.) convergence: $\left\|\left(A_{n}(T, x)-\widehat{x}\right) e\right\|_{\infty} \rightarrow 0$?
(P2) If the trace τ is infinite, how far beyond $L^{1}(\mathcal{M}, \tau)$ inside $L^{1}(\mathcal{M}, \tau)+\mathcal{M}$ can one go for this convergence to hold?
These were partially answered by Junge and Xu (J. AMS, 2007), where it was shown that for $1<p<2$ we have b.a.u. convergence and if $2 \leq p<\infty$ the averages converge a.u.

Since then the argument of Junge and $X u$ has been simplified but no major progress had been attained in answering these questions.

Overview

The main goal of this talk is to present a solution to $(\mathrm{P} 1)+(\mathrm{P} 2)$:

Overview

The main goal of this talk is to present a solution to (P1)+(P2):
There is a.u. convergence for all $1 \leq p<\infty$ and if τ is infinite and \mathcal{M} is non-atomic, a.u. convergence of egrodic averages holds for $x \in L^{1}(\mathcal{M}, \tau)+\mathcal{M}$ if and only if $x \in \mathcal{R}_{\mu}$, the latter extending far beyond the family of noncommutative L^{p}-spaces, $1 \leq p<\infty$.

Overview

The main goal of this talk is to present a solution to (P1)+(P2):
There is a.u. convergence for all $1 \leq p<\infty$ and if τ is infinite and \mathcal{M} is non-atomic, a.u. convergence of egrodic averages holds for $x \in L^{1}(\mathcal{M}, \tau)+\mathcal{M}$ if and only if $x \in \mathcal{R}_{\mu}$, the latter extending far beyond the family of noncommutative L^{p}-spaces, $1 \leq p<\infty$.
Besides, we establish a.u. convergence in \mathcal{R}_{μ} for a variety of noncommutative individual ergodic theorems, some of which new and some previously known to hold only for b.a.u. convergence.

Preliminaries

Let \mathcal{M} be a semifinite von Neumann algebra equipped with a faithful normal semifinite trace τ. Let $\mathcal{P}(\mathcal{M})$ be the lattice of projections in \mathcal{M}. If $\mathbf{1}$ is the identity of \mathcal{M} and $e \in \mathcal{P}(\mathcal{M})$, we write $e^{\perp}=\mathbf{1}-e$.

Preliminaries

Let \mathcal{M} be a semifinite von Neumann algebra equipped with a faithful normal semifinite trace τ. Let $\mathcal{P}(\mathcal{M})$ be the lattice of projections in \mathcal{M}. If $\mathbf{1}$ is the identity of \mathcal{M} and $e \in \mathcal{P}(\mathcal{M})$, we write $e^{\perp}=\mathbf{1}-e$.

Denote by $L^{0}=L^{0}(\mathcal{M}, \tau)$ the $*$-algebra of τ-measurable operators affiliated with \mathcal{M} endowed with the measure topology.

Preliminaries

Let \mathcal{M} be a semifinite von Neumann algebra equipped with a faithful normal semifinite trace τ. Let $\mathcal{P}(\mathcal{M})$ be the lattice of projections in \mathcal{M}. If $\mathbf{1}$ is the identity of \mathcal{M} and $e \in \mathcal{P}(\mathcal{M})$, we write $e^{\perp}=\mathbf{1}-e$.

Denote by $L^{0}=L^{0}(\mathcal{M}, \tau)$ the $*$-algebra of τ-measurable operators affiliated with \mathcal{M} endowed with the measure topology.
If $1 \leq p<\infty$, then the noncommutative L^{p}-space associated with (\mathcal{M}, τ) is defined as

$$
L^{p}=L^{p}(\mathcal{M}, \tau)=\left\{x \in L^{0}:\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{1 / p}<\infty\right\}
$$

where $|x|=\left(x^{*} x\right)^{1 / 2}$, the absolute value of x. Naturally, $L^{\infty}(\mathcal{M})=\mathcal{M}$, equipped with the uniform norm $\|\cdot\|_{\infty}$.

Preliminaries

Let $x \in L^{0}$, and let $\left\{e_{\lambda}\right\}_{\lambda \geq 0}$ be the spectral family of projections for the absolute value $|x|$ of x. If $t>0$, then a non-increasing rearrangement of x is defined as

$$
\mu_{t}(x)=\inf \left\{\lambda>0: \tau\left(e_{\lambda}^{\perp}\right) \leq t\right\} .
$$

Preliminaries

Let $x \in L^{0}$, and let $\left\{e_{\lambda}\right\}_{\lambda \geq 0}$ be the spectral family of projections for the absolute value $|x|$ of x. If $t>0$, then a non-increasing rearrangement of x is defined as

$$
\mu_{t}(x)=\inf \left\{\lambda>0: \tau\left(e_{\lambda}^{\perp}\right) \leq t\right\} .
$$

A Banach space $\left(E,\|\cdot\|_{E}\right) \subset L^{0}$ is called symmetric if conditions

$$
x \in E, y \in L^{0}, \mu_{t}(y) \leq \mu_{t}(x) \text { for all } t>0
$$

imply that $y \in E$ and $\|y\|_{E} \leq\|x\|_{E}$.

Preliminaries

Let $x \in L^{0}$, and let $\left\{e_{\lambda}\right\}_{\lambda \geq 0}$ be the spectral family of projections for the absolute value $|x|$ of x. If $t>0$, then a non-increasing rearrangement of x is defined as

$$
\mu_{t}(x)=\inf \left\{\lambda>0: \tau\left(e_{\lambda}^{\perp}\right) \leq t\right\} .
$$

A Banach space $\left(E,\|\cdot\|_{E}\right) \subset L^{0}$ is called symmetric if conditions

$$
x \in E, y \in L^{0}, \mu_{t}(y) \leq \mu_{t}(x) \text { for all } t>0
$$

imply that $y \in E$ and $\|y\|_{E} \leq\|x\|_{E}$.
A Banach space $\left(E,\|\cdot\|_{E}\right) \subset L^{0}$ is called fully symmetric if

$$
x \in E, y \in L^{0}, \int_{0}^{s} \mu_{t}(y) d t \leq \int_{0}^{s} \mu_{t}(x) d t \text { for all } s>0
$$

entail that $y \in E$ and $\|y\|_{E} \leq\|x\|_{E}$.

Preliminaries

Define

$$
\mathcal{R}_{\tau}=\left\{x \in L^{1}+\mathcal{M}: \mu_{t}(x) \rightarrow 0 \text { as } t \rightarrow \infty\right\}
$$

Preliminaries

Define

$$
\mathcal{R}_{\tau}=\left\{x \in L^{1}+\mathcal{M}: \mu_{t}(x) \rightarrow 0 \text { as } t \rightarrow \infty\right\}
$$

Theorem

Equipped with the norm

$$
\|x\|_{L^{1}+\mathcal{M}}=\int_{0}^{1} \mu_{t}(x) d t
$$

\mathcal{R}_{μ} is a fully symmetric space.

Preliminaries

Define

$$
\mathcal{R}_{\tau}=\left\{x \in L^{1}+\mathcal{M}: \mu_{t}(x) \rightarrow 0 \text { as } t \rightarrow \infty\right\}
$$

Theorem

Equipped with the norm

$$
\|x\|_{L^{1}+\mathcal{M}}=\int_{0}^{1} \mu_{t}(x) d t
$$

\mathcal{R}_{μ} is a fully symmetric space.

Proposition

If $\tau(\mathbf{1})=\infty$, then a symmetric space $E \subset L^{1}+\mathcal{M}$ is contained in \mathcal{R}_{τ} if and only if $\mathbf{1} \notin E$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

A linear operator $T: L^{1}+\mathcal{M} \rightarrow L^{1}+\mathcal{M}$ is called a Dunford-Schwartz operator if

$$
\|T(x)\|_{1} \leq\|x\|_{1} \quad \forall x \in L^{1} \quad \text { and } \quad\|T(x)\|_{\infty} \leq\|x\|_{\infty} \quad \forall x \in \mathcal{M}
$$

If a Dunford-Schwartz operator T is positive, we write $T \in D S^{+}$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

A linear operator $T: L^{1}+\mathcal{M} \rightarrow L^{1}+\mathcal{M}$ is called a Dunford-Schwartz operator if

$$
\|T(x)\|_{1} \leq\|x\|_{1} \quad \forall x \in L^{1} \quad \text { and } \quad\|T(x)\|_{\infty} \leq\|x\|_{\infty} \quad \forall x \in \mathcal{M}
$$

If a Dunford-Schwartz operator T is positive, we write $T \in D S^{+}$.
Given $T \in D S^{+}$and $x \in L^{1}+\mathcal{M}$, recall that

$$
A_{n}(T, x)=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}(x), \quad n=1,2, \ldots
$$

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

A linear operator $T: L^{1}+\mathcal{M} \rightarrow L^{1}+\mathcal{M}$ is called a Dunford-Schwartz operator if

$$
\|T(x)\|_{1} \leq\|x\|_{1} \quad \forall x \in L^{1} \quad \text { and } \quad\|T(x)\|_{\infty} \leq\|x\|_{\infty} \quad \forall x \in \mathcal{M}
$$

If a Dunford-Schwartz operator T is positive, we write $T \in D S^{+}$.
Given $T \in D S^{+}$and $x \in L^{1}+\mathcal{M}$, recall that

$$
A_{n}(T, x)=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}(x), \quad n=1,2, \ldots
$$

A sequence $\left\{x_{n}\right\} \subset L^{0}$ is said to converge to $\widehat{x} \in L^{0}$ almost uniformly (a.u.) (bilaterally almost uniformly (b.a.u.)) if for every $\epsilon>0$ there exists $e \in \mathcal{P}(\mathcal{M})$ such that $\tau\left(e^{\perp}\right) \leq \epsilon$ and $\left\|\left(\widehat{x}-x_{n}\right) e\right\|_{\infty} \rightarrow 0$ (respectively, $\left\|e\left(\widehat{x}-x_{n}\right) e\right\|_{\infty}=0$).

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Theorem (Yeadon 1977)

Let $T \in D S^{+}$and $x \in L^{1}$. Then the averages $A_{n}(T, x)$ converge b.a.u. to some $\widehat{x} \in L^{1}$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Theorem (Yeadon 1977)

Let $T \in D S^{+}$and $x \in L^{1}$. Then the averages $A_{n}(T, x)$ converge b.a.u. to some $\widehat{x} \in L^{1}$.

Remark (Chilin-L 2015)

It can be seen that the iterating operators T that were considered by Yeadon can be uniquely extended to a positive Dunford-Schwartz operators, hence the assumption $T \in D S^{+}$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Theorem (Yeadon 1977)

Let $T \in D S^{+}$and $x \in L^{1}$. Then the averages $A_{n}(T, x)$ converge b.a.u. to some $\widehat{x} \in L^{1}$.

Remark (Chilin-L 2015)

It can be seen that the iterating operators T that were considered by Yeadon can be uniquely extended to a positive Dunford-Schwartz operators, hence the assumption $T \in D S^{+}$.

Here is an extension of Yeadon's result:

Theorem (Junge-Xu 2007)

If $T \in D S^{+}$and $x \in L^{p}, 1<p<\infty$, then the averages $A_{n}(T, x)$ converge b.a.u. to some $\hat{x} \in L^{p}$. If $p \geq 2$, then these averages converge also a.u.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

In fact, we have a.u. convergence in the above theorems:
Theorem (L 2016)
Let $T \in D S^{+}$and $x \in L^{p}, 1 \leq p<\infty$. Then the averages $A_{n}(T, x)$ converge a.u. to some $\widehat{x} \in L^{p}$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

In fact, we have a.u. convergence in the above theorems:

Theorem (L 2016)

Let $T \in D S^{+}$and $x \in L^{p}, 1 \leq p<\infty$. Then the averages $A_{n}(T, x)$ converge a.u. to some $\widehat{x} \in L^{p}$.

Proof of this result is based on the following notion.

Definition

Let $(X,\|\cdot\|)$ be a normed space. A sequence of maps $M_{n}: X \rightarrow L^{0}$ is called bilaterally uniformly equicontinuous in measure (b.u.e.m.) at zero if for every $\epsilon>0$ and $\delta>0$ there exists $\gamma>0$ such that, given $x \in X$ with $\|x\|<\gamma$, there is a projection $e \in \mathcal{P}(\mathcal{M})$ satisfying conditions

$$
\tau\left(e^{\perp}\right) \leq \epsilon \quad \text { and } \quad \sup _{n}\left\|e M_{n}(x) e\right\|_{\infty} \leq \delta
$$

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Remark

It is easy to see that, in the commutative case, bilateraly uniform equicontinuity in measure at zero of a sequence $M_{n}: X \rightarrow L^{0}$ is equivalent to the continuity in measure at zero of the maximal operator $M^{*}(f)=\sup _{n}\left|M_{n}(f)\right|, f \in X$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Remark

It is easy to see that, in the commutative case, bilateraly uniform equicontinuity in measure at zero of a sequence $M_{n}: X \rightarrow L^{0}$ is equivalent to the continuity in measure at zero of the maximal operator $M^{*}(f)=\sup _{n}\left|M_{n}(f)\right|, f \in X$.

Proposition (Crucial Step)

Let $(X,\|\cdot\|)$ be a Banach space, $M_{n}: X \rightarrow L^{0}$ a sequence of linear maps that is b.u.e.m. at zero on X. Then the set

$$
\left\{x \in X:\left\{M_{n}(x)\right\} \text { converges a.u. }\right\}
$$

is closed in X.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Proposition

The sequence $\left\{A_{n}\right\}$ given by (1) is b.u.e.m. at zero on L^{p}, $1 \leq p<\infty$.

Since the set $L^{p} \cap L^{2}$ is dense in $L^{p}, 1 \leq p<\infty$, and it can be shown that the sequence $\left\{A_{n}(x)\right\}$ converges a.u. whenever $x \in L^{2}$, the averages $A_{n}(x)$ converge a.u. for every $x \in L^{p}$. Q.E.D.

When $X=L^{p}, 1 \leq p<\infty$, we have the following result.

Theorem (Noncommutative Banach Principle)

Let $M_{n}: L^{p} \rightarrow L^{0}$ be a sequence of positive continuous (with respect to the measure topology in L^{0}) linear maps such that for every $x \in L^{p}$ and $\epsilon>0$ there exists a projection $e \in \mathcal{P}(\mathcal{M})$ satisfying

$$
\tau\left(e^{\perp}\right) \leq \epsilon \quad \text { and } \quad \sup _{n}\left\|e M_{n}(x) e\right\|_{\infty}<\infty .
$$

Then the set $\left\{x \in X:\left\{M_{n}(x)\right\}\right.$ converges a.u. $\}$ is closed in L^{p}.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Here is an extension of the above to \mathcal{R}_{τ} :

Theorem

Let $T \in D S^{+}$and $x \in \mathcal{R}_{\tau}$. Then the averages $A_{n}(T, x)$ converge a.u. to some $\widehat{x} \in L^{1}+\mathcal{M}$. Moreover, if $E \subset L^{1}+\mathcal{M}$ is a fully symmetric space such that $\mathbf{1} \notin E\left(E \subset \mathcal{R}_{\mu}\right)$ and $x \in E$, then these averages converge a.u. to some $\widehat{x} \in E$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Here is an extension of the above to \mathcal{R}_{τ} :

Theorem

Let $T \in D S^{+}$and $x \in \mathcal{R}_{\tau}$. Then the averages $A_{n}(T, x)$ converge a.u. to some $\hat{x} \in L^{1}+\mathcal{M}$. Moreover, if $E \subset L^{1}+\mathcal{M}$ is a fully symmetric space such that $\mathbf{1} \notin E\left(E \subset \mathcal{R}_{\mu}\right)$ and $x \in E$, then these averages converge a.u. to some $\widehat{x} \in E$.

If the algebra \mathcal{M} is non-atomic, then \mathcal{R}_{μ} is the largest subspace of $L^{1}+\mathcal{M}$ for which we have a.u. convergence of the averages (1):

Theorem

If $x \in\left(L^{1}+\mathcal{M}\right) \backslash \mathcal{R}_{\mu}$, then there is $T \in D S^{+}(\mathcal{M}, \tau)$ such that the sequence $\left\{A_{n}(T, x)\right\}$ does not converge a.u.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Let $\left\{T_{\mathbf{u}}: \mathbf{u} \in \mathbb{R}_{+}^{d}\right\}$ be a semigroup of contractions of L^{1} which is continuous in the interior of \mathbb{R}_{+}^{d}, that is,

$$
\left\|T_{\mathbf{u}}(x)-T_{\mathbf{v}}(x)\right\|_{1} \rightarrow 0 \text { as } \mathbf{u} \rightarrow \mathbf{v}
$$

for all $x \in L^{1}$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{R}_{+}^{d}$ with $v_{i}>0,1 \leq i \leq d$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Let $\left\{T_{\mathbf{u}}: \mathbf{u} \in \mathbb{R}_{+}^{d}\right\}$ be a semigroup of contractions of L^{1} which is continuous in the interior of \mathbb{R}_{+}^{d}, that is,

$$
\left\|T_{\mathbf{u}}(x)-T_{\mathbf{v}}(x)\right\|_{1} \rightarrow 0 \text { as } \mathbf{u} \rightarrow \mathbf{v}
$$

for all $x \in L^{1}$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{R}_{+}^{d}$ with $v_{i}>0,1 \leq i \leq d$.
Denote

$$
\begin{equation*}
A_{t}(x)=\frac{1}{t^{d}} \int_{[0, t]^{d}} T_{\mathbf{u}}(x) d \mathbf{u}, \quad x \in L^{1}, t>0 \tag{2}
\end{equation*}
$$

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Let $\left\{T_{\mathbf{u}}: \mathbf{u} \in \mathbb{R}_{+}^{d}\right\}$ be a semigroup of contractions of L^{1} which is continuous in the interior of \mathbb{R}_{+}^{d}, that is,

$$
\left\|T_{\mathbf{u}}(x)-T_{\mathbf{v}}(x)\right\|_{1} \rightarrow 0 \text { as } \mathbf{u} \rightarrow \mathbf{v}
$$

for all $x \in L^{1}$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{R}_{+}^{d}$ with $v_{i}>0,1 \leq i \leq d$.
Denote

$$
\begin{equation*}
A_{t}(x)=\frac{1}{t^{d}} \int_{[0, t]^{d}} T_{\mathbf{u}}(x) d \mathbf{u}, \quad x \in L^{1}, t>0 \tag{2}
\end{equation*}
$$

The next theorem is a noncommutative extension of a theorem of Dunford and Schwartz.

Theorem

If $\left\{T_{\mathbf{u}}: \mathbf{u} \in \mathbb{R}_{+}^{d}\right\} \subset D S^{+}$is a semigroup continuous on the interior of \mathbb{R}_{+}^{d} and $x \in L^{1}$. Then the averages $A_{t}(x)$ given by (2) converge a.u. to some $\hat{x} \in L^{1}$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

In particular, we have the following.

Corollary

Let $\left\{T_{s}\right\}_{s \geq 0} \subset D S^{+}$be a semigroup that is strongly continuous on L^{1} at every $s>0$. Then the averages

$$
\frac{1}{t} \int_{0}^{t} T_{s}(x) d s
$$

converge a.u. for every $x \in L^{1}$ as $t \rightarrow \infty$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

In particular, we have the following.

Corollary

Let $\left\{T_{s}\right\}_{s \geq 0} \subset D S^{+}$be a semigroup that is strongly continuous on L^{1} at every $s>0$. Then the averages

$$
\frac{1}{t} \int_{0}^{t} T_{s}(x) d s
$$

converge a.u. for every $x \in L^{1}$ as $t \rightarrow \infty$.
Let $\left(E,\|\cdot\|_{E}\right) \subset L^{1}+\mathcal{M}$ be a symmetric space, and let $\left\{T_{\mathbf{u}}: \mathbf{u} \in \mathbb{R}_{+}^{d}\right\} \subset D S^{+}$be a semigroup of contractions in E. We say that $\left\{T_{\mathbf{u}}\right\}$ is continuous in the interior of \mathbb{R}_{+}^{d} on E, if

$$
\left\|T_{\mathbf{u}}(x)-T_{\mathbf{v}}(x)\right\|_{E} \rightarrow 0 \text { as } \mathbf{u} \rightarrow \mathbf{v}
$$

for all $x \in E, \mathbf{v}=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{R}_{+}^{d}$ with $v_{i}>0,1 \leq i \leq d$

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Denote, as before,

$$
\begin{equation*}
A_{t}(x)=\frac{1}{t^{d}} \int_{[0, t]^{d}} T_{\mathbf{u}}(x) d \mathbf{u}, \quad x \in E, t>0 \tag{3}
\end{equation*}
$$

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Denote, as before,

$$
\begin{equation*}
A_{t}(x)=\frac{1}{t^{d}} \int_{[0, t]^{d}} T_{\mathbf{u}}(x) d \mathbf{u}, \quad x \in E, t>0 \tag{3}
\end{equation*}
$$

Theorem

Let $\left\{T_{\mathbf{u}}: \mathbf{u} \in \mathbb{R}_{+}^{d}\right\} \subset D S^{+}$be a semigroup continuous in the interior of \mathbb{R}_{+}^{d} on \mathcal{R}_{τ} and L^{1}. Then for every $x \in \mathcal{R}_{\tau}$ the averages (3) converge a.u. as $t \rightarrow \infty$ to some $\widehat{x} \in \mathcal{R}_{\tau}$.

Dunford-Schwartz individual ergodic theorems in \mathcal{R}_{τ}

Denote, as before,

$$
\begin{equation*}
A_{t}(x)=\frac{1}{t^{d}} \int_{[0, t]^{d}} T_{\mathbf{u}}(x) d \mathbf{u}, \quad x \in E, t>0 \tag{3}
\end{equation*}
$$

Theorem

Let $\left\{T_{\mathbf{u}}: \mathbf{u} \in \mathbb{R}_{+}^{d}\right\} \subset D S^{+}$be a semigroup continuous in the interior of \mathbb{R}_{+}^{d} on \mathcal{R}_{τ} and L^{1}. Then for every $x \in \mathcal{R}_{\tau}$ the averages (3) converge a.u. as $t \rightarrow \infty$ to some $\widehat{x} \in \mathcal{R}_{\tau}$.

Theorem

Let $\mathbf{1} \notin E \subset L^{1}+\mathcal{M}$ be a fully symmetric space, and let $\left\{T_{\mathbf{u}}: \mathbf{u} \in \mathbb{R}_{+}^{d}\right\} \subset D S^{+}$be a semigroup continuous in the interior of \mathbb{R}_{+}^{d} on $\mathcal{R}_{\tau}, L^{1}$, and E. Then for every $x \in E$, the averages (3) converge a.u. as $t \rightarrow \infty$ to some $\widehat{x} \in E$.

Weighted noncommutative individual ergodic theorems

Let \mathbb{C}_{1} be the unit circle in \mathbb{C}. A function $P: \mathbb{Z} \rightarrow \mathbb{C}$ is said to be a trigonometric polynomial if $P(k)=\sum_{j=1}^{s} z_{j} \lambda_{j}^{k}, k \in \mathbb{Z}$, for some $s \in \mathbb{N},\left\{z_{j}\right\}_{1}^{s} \subset \mathbb{C}$, and $\left\{\lambda_{j}\right\}_{1}^{s} \subset \mathbb{C}_{1}$.

Weighted noncommutative individual ergodic theorems

Let \mathbb{C}_{1} be the unit circle in \mathbb{C}. A function $P: \mathbb{Z} \rightarrow \mathbb{C}$ is said to be a trigonometric polynomial if $P(k)=\sum_{j=1}^{s} z_{j} \lambda_{j}^{k}, k \in \mathbb{Z}$, for some $s \in \mathbb{N},\left\{z_{j}\right\}_{1}^{s} \subset \mathbb{C}$, and $\left\{\lambda_{j}\right\}_{1}^{s} \subset \mathbb{C}_{1}$.
A sequence $\left\{\beta_{k}\right\}_{k=0}^{\infty} \subset \mathbb{C}$ is called bounded Besicovitch if
(a) $\sup _{k}\left|\beta_{k}\right| \leq C<\infty$;
(b) for every $\epsilon>0$ there exists a trigonometric polynomial P such that

$$
\limsup _{n} \frac{1}{n} \sum_{k=0}^{n-1}\left|\beta_{k}-P(k)\right|<\epsilon
$$

Weighted noncommutative individual ergodic theorems

Theorem (Chilin-L-Skalski 2005)

Assume that \mathcal{M} has a separable predual. Let $T \in D S^{+}$, and let $\left\{\beta_{k}\right\}$ be a bounded Besicovitch sequence. Then the averages

$$
\begin{equation*}
B_{n}(x)=\frac{1}{n} \sum_{k=0}^{n-1} \beta_{k} T^{k}(x) \tag{4}
\end{equation*}
$$

converge b.a.u. for every $x \in L^{1}$ to some $\hat{x} \in L^{1}$.

Here is an extension of the previous theorem:

Theorem

Let \mathcal{M}, T, and $\left\{\beta_{k}\right\}$ be as above. Then for every $x \in \mathcal{R}_{\tau}$ the averages (4) converge a.u. to some $\widehat{x} \in L^{1}+\mathcal{M}$.

Weighted noncommutative individual ergodic theorems

Now we shall present a noncommutative Wiener-Wintner theorem.

Weighted noncommutative individual ergodic theorems

Now we shall present a noncommutative Wiener-Wintner theorem.
Denote

$$
\begin{equation*}
A_{n}(x, \lambda)=\frac{1}{n} \sum_{k=0}^{n-1} \lambda^{k} T^{k}(x) \tag{5}
\end{equation*}
$$

where $x \in L^{1}+\mathcal{M}, \quad T \in D S^{+}$, and $\lambda \in \mathbb{C}_{1}$.

Weighted noncommutative individual ergodic theorems

Now we shall present a noncommutative Wiener-Wintner theorem.
Denote

$$
\begin{equation*}
A_{n}(x, \lambda)=\frac{1}{n} \sum_{k=0}^{n-1} \lambda^{k} T^{k}(x) \tag{5}
\end{equation*}
$$

where $x \in L^{1}+\mathcal{M}, \quad T \in D S^{+}$, and $\lambda \in \mathbb{C}_{1}$.

Definition

We say that $x \in L^{1}+\mathcal{M}$ satisfies Wiener-Wintner property and we write $x \in W W$ if, given $\epsilon>0$, there exists a projection $e \in P(\mathcal{M})$ with $\tau\left(e^{\perp}\right) \leq \epsilon$ such that the sequence $\left\{A_{n}(x, \lambda) e\right\}$ converges in $\left(\mathcal{M},\|\cdot\|_{\infty}\right)$ for all $\lambda \in \mathbb{C}_{1}$.

Weighted noncommutative individual ergodic theorems

Assume now that τ is finite, $T \in D S^{+}$is an ergodic homomorphism, and $\tau \circ T=\tau$.

Weighted noncommutative individual ergodic theorems

Assume now that τ is finite, $T \in D S^{+}$is an ergodic homomorphism, and $\tau \circ T=\tau$.

Then we have the following noncommutative Wiener-Wintner theorem which generalizes the classical Wiener-Wintner theorem. It is an improvement of (L 2014) where the convergence was given in terms of the two-sided multiplication by a projection $e \in \mathcal{P}(\mathcal{M})$.

Weighted noncommutative individual ergodic theorems

Assume now that τ is finite, $T \in D S^{+}$is an ergodic homomorphism, and $\tau \circ T=\tau$.

Then we have the following noncommutative Wiener-Wintner theorem which generalizes the classical Wiener-Wintner theorem. It is an improvement of (L 2014) where the convergence was given in terms of the two-sided multiplication by a projection $e \in \mathcal{P}(\mathcal{M})$.

Theorem

$L^{1} \subset W W$, that is, for every $x \in L^{1}$ and $\epsilon>0$ there exists a projection $e \in P(\mathcal{M})$ such that $\tau\left(e^{\perp}\right) \leq \epsilon$ and $\left\{A_{n}(x, \lambda) e\right\}$ converges in $\left(\mathcal{M},\|\cdot\|_{\infty}\right)$ for all $\lambda \in \mathbb{C}_{1}$.

Applications

Every individual ergodic theorem for \mathcal{R}_{τ} above (except possibly the previous one) is valid for any noncommutative fully symmetric space $E \subset \mathcal{R}_{\tau}$ (with the limit $\widehat{x} \in E$). We shall give a few examples of noncommutative fully symmetric subspaces of \mathcal{R}_{τ}.

Applications

Every individual ergodic theorem for \mathcal{R}_{τ} above (except possibly the previous one) is valid for any noncommutative fully symmetric space $E \subset \mathcal{R}_{\tau}$ (with the limit $\hat{x} \in E$). We shall give a few examples of noncommutative fully symmetric subspaces of \mathcal{R}_{τ}. Recall that $\tau(\mathbf{1})=\infty$. As we have noticed, a symmetric space $E \subset L^{1}+\mathcal{M}$ is contained in \mathcal{R}_{τ} if and only if $\mathbf{1} \notin E$.

Applications

Every individual ergodic theorem for \mathcal{R}_{τ} above (except possibly the previous one) is valid for any noncommutative fully symmetric space $E \subset \mathcal{R}_{\tau}$ (with the limit $\hat{x} \in E$). We shall give a few examples of noncommutative fully symmetric subspaces of \mathcal{R}_{τ}.
Recall that $\tau(\mathbf{1})=\infty$. As we have noticed, a symmetric space $E \subset L^{1}+\mathcal{M}$ is contained in \mathcal{R}_{τ} if and only if $\mathbf{1} \notin E$.

1. Let Φ be an Orlicz function, that is, $\Phi:[0, \infty) \rightarrow[0, \infty)$ is a convex continuous at 0 function such that $\Phi(0)=0$ and $\Phi(u)>0$ if $u \neq 0$.

Applications

Every individual ergodic theorem for \mathcal{R}_{τ} above (except possibly the previous one) is valid for any noncommutative fully symmetric space $E \subset \mathcal{R}_{\tau}$ (with the limit $\hat{x} \in E$). We shall give a few examples of noncommutative fully symmetric subspaces of \mathcal{R}_{τ}.
Recall that $\tau(\mathbf{1})=\infty$. As we have noticed, a symmetric space $E \subset L^{1}+\mathcal{M}$ is contained in \mathcal{R}_{τ} if and only if $\mathbf{1} \notin E$.

1. Let Φ be an Orlicz function, that is, $\Phi:[0, \infty) \rightarrow[0, \infty)$ is a convex continuous at 0 function such that $\Phi(0)=0$ and $\Phi(u)>0$ if $u \neq 0$.

Denote

$$
L^{\Phi}=\left\{x \in L^{0}: \tau\left(\Phi\left(\frac{|x|}{a}\right)\right)<\infty \text { for some } a>0\right\}
$$

be the corresponding noncommutative Orlicz space.

Applications

Let

$$
\|x\|_{\Phi}=\inf \left\{a>0: \tau\left(\Phi\left(\frac{|x|}{a}\right)\right) \leq 1\right\}
$$

be the Luxemburg norm in L^{Φ}.

Applications

Let

$$
\|x\|_{\Phi}=\inf \left\{a>0: \tau\left(\Phi\left(\frac{|x|}{a}\right)\right) \leq 1\right\}
$$

be the Luxemburg norm in L^{Φ}.
Since $\tau(\mathbf{1})=\infty$, we have $\tau\left(\Phi\left(\frac{1}{a}\right)\right)=\infty$ for all $a>0$, hence $\mathbf{1} \notin L^{\Phi}$, hence $L^{\Phi} \subset \mathcal{R}_{\mu}$.

Applications

Let

$$
\|x\|_{\Phi}=\inf \left\{a>0: \tau\left(\Phi\left(\frac{|x|}{a}\right)\right) \leq 1\right\}
$$

be the Luxemburg norm in L^{Φ}.
Since $\tau(\mathbf{1})=\infty$, we have $\tau\left(\Phi\left(\frac{1}{a}\right)\right)=\infty$ for all $a>0$, hence $\mathbf{1} \notin L^{\Phi}$, hence $L^{\Phi} \subset \mathcal{R}_{\mu}$.
2. A space $\left(E,\|\cdot\|_{E}\right)$ is said to have order continuous norm if $\left\|x_{n}\right\|_{E} \downarrow 0$ whenever $x_{n} \in E_{+}$and $x_{n} \downarrow 0$.

Applications

Let

$$
\|x\|_{\Phi}=\inf \left\{a>0: \tau\left(\Phi\left(\frac{|x|}{a}\right)\right) \leq 1\right\}
$$

be the Luxemburg norm in L^{Φ}.
Since $\tau(\mathbf{1})=\infty$, we have $\tau\left(\Phi\left(\frac{1}{a}\right)\right)=\infty$ for all $a>0$, hence $\mathbf{1} \notin L^{\Phi}$, hence $L^{\Phi} \subset \mathcal{R}_{\mu}$.
2. A space $\left(E,\|\cdot\|_{E}\right)$ is said to have order continuous norm if $\left\|x_{n}\right\|_{E} \downarrow 0$ whenever $x_{n} \in E_{+}$and $x_{n} \downarrow 0$.
If $E=E(\mathcal{M}, \tau)$ is a noncommutative fully symmetric space with order continuous norm, then $\tau(\{|x|>\lambda\})<\infty$ for all $x \in E$ and $\lambda>0$, so $E \subset \mathcal{R}_{\tau}$.

Applications

If $E=E(0, \infty)$ is a symmetric function space, then the space

$$
E(\mathcal{M})=\left\{x \in L^{0}: \mu_{t}(x) \in E\right\} \text { with }\|x\|_{E(\mathcal{M})}=\left\|\mu_{t}(x)\right\|_{E}
$$

is a symmetric space.

Applications

If $E=E(0, \infty)$ is a symmetric function space, then the space

$$
E(\mathcal{M})=\left\{x \in L^{0}: \mu_{t}(x) \in E\right\} \text { with }\|x\|_{E(\mathcal{M})}=\left\|\mu_{t}(x)\right\|_{E}
$$

is a symmetric space.
3. Let φ be an increasing concave function on $[0, \infty)$ with $\varphi(0)=0$ and $\varphi(t)>0$ for some $t>0$.

Applications

If $E=E(0, \infty)$ is a symmetric function space, then the space

$$
E(\mathcal{M})=\left\{x \in L^{0}: \mu_{t}(x) \in E\right\} \text { with }\|x\|_{E(\mathcal{M})}=\left\|\mu_{t}(x)\right\|_{E}
$$

is a symmetric space.
3. Let φ be an increasing concave function on $[0, \infty)$ with $\varphi(0)=0$ and $\varphi(t)>0$ for some $t>0$.
Denote

$$
\Lambda_{\varphi}(\mathcal{M}, \tau)=\left\{x \in L^{0}(\mathcal{M}, \tau):\|x\|_{\Lambda_{\varphi}}=\int_{0}^{\infty} \mu_{t}(x) d \varphi(t)<\infty\right\}
$$

the corresponding noncommutative Lorentz space.

Applications

If $E=E(0, \infty)$ is a symmetric function space, then the space

$$
E(\mathcal{M})=\left\{x \in L^{0}: \mu_{t}(x) \in E\right\} \text { with }\|x\|_{E(\mathcal{M})}=\left\|\mu_{t}(x)\right\|_{E}
$$

is a symmetric space.
3. Let φ be an increasing concave function on $[0, \infty)$ with $\varphi(0)=0$ and $\varphi(t)>0$ for some $t>0$.
Denote

$$
\Lambda_{\varphi}(\mathcal{M}, \tau)=\left\{x \in L^{0}(\mathcal{M}, \tau):\|x\|_{\Lambda_{\varphi}}=\int_{0}^{\infty} \mu_{t}(x) d \varphi(t)<\infty\right\}
$$

the corresponding noncommutative Lorentz space.
Since $\Lambda_{\varphi}(0, \infty)$ is a fully symmetric function space and $\Lambda_{\varphi}(0, \infty) \subset \mathcal{R}_{\mu}(0, \infty)$ whenever $\varphi(\infty)=\infty$, the noncommutative fully symmetric space $\Lambda_{\varphi}(\mathcal{M}, \tau)$ is contained in \mathcal{R}_{τ}.

Applications

4. Let $E(0, \infty)$ be a fully symmetric function space, and let $D_{s}: E(0, \infty) \rightarrow E(0, \infty), s>0$, be the bounded linear operator given by $D_{s}(f)(t)=f(t / s), t>0$.

Applications

4. Let $E(0, \infty)$ be a fully symmetric function space, and let $D_{s}: E(0, \infty) \rightarrow E(0, \infty), s>0$, be the bounded linear operator given by $D_{s}(f)(t)=f(t / s), t>0$.
The Boyd index q_{E} is defined as

$$
q_{E}=\lim _{s \rightarrow+0} \frac{\log s}{\log \left\|D_{s}\right\|}
$$

Applications

4. Let $E(0, \infty)$ be a fully symmetric function space, and let $D_{s}: E(0, \infty) \rightarrow E(0, \infty), s>0$, be the bounded linear operator given by $D_{s}(f)(t)=f(t / s), t>0$.
The Boyd index q_{E} is defined as

$$
q_{E}=\lim _{s \rightarrow+0} \frac{\log s}{\log \left\|D_{s}\right\|}
$$

It is known that $1 \leq q_{E} \leq \infty$. If $q_{E}<\infty$, then $\mathbf{1} \notin E(\mathcal{M})$, and so $E(\mathcal{M}) \subset \mathcal{R}_{\tau}$.

Applications

4. Let $E(0, \infty)$ be a fully symmetric function space, and let $D_{s}: E(0, \infty) \rightarrow E(0, \infty), s>0$, be the bounded linear operator given by $D_{s}(f)(t)=f(t / s), t>0$.
The Boyd index q_{E} is defined as

$$
q_{E}=\lim _{s \rightarrow+0} \frac{\log s}{\log \left\|D_{s}\right\|}
$$

It is known that $1 \leq q_{E} \leq \infty$. If $q_{E}<\infty$, then $\mathbf{1} \notin E(\mathcal{M})$, and so $E(\mathcal{M}) \subset \mathcal{R}_{\tau}$.

