INDIVIDUAL ERGODIC THEOREMS IN SEMIFINITE VON NEUMANN ALGEBRAS

Vladimir Chilin, National University of Uzbekistan vladimirchil@gmail.com Semyon Litvinov, Pennsylvania State University-Hazleton snl2@psu.edu

> XIX International Conference Geometry, Integrability and Quantization June 2-7, Varna, Bulgaria

Definition

Let (Ω, μ) be a measure space. A linear operator T on $L^1(\Omega) + L^{\infty}(\Omega)$ is called a Dunford-Schwartz operator if

 $\|\mathcal{T}(f)\|_{\infty} \leq \|f\|_{\infty} \,\, \forall \, f \in L^{\infty}(\Omega) \ \, \text{and} \ \, \|\mathcal{T}(f)\|_{1} \leq \|f\|_{1} \,\, \forall \, f \in L^{1}(\Omega).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Let (Ω, μ) be a measure space. A linear operator T on $L^1(\Omega) + L^{\infty}(\Omega)$ is called a Dunford-Schwartz operator if

 $\|\mathcal{T}(f)\|_{\infty} \leq \|f\|_{\infty} \,\,\forall f \in L^{\infty}(\Omega) \,\,\text{ and }\,\, \|\mathcal{T}(f)\|_{1} \leq \|f\|_{1} \,\,\forall f \in L^{1}(\Omega)$

Theorem

Let $T : L^1(\Omega) + L^{\infty}(\Omega) \to L^1(\Omega) + L^{\infty}(\Omega)$ be a Dunford-Schwartz operator, and let $f \in L^p(\Omega)$, $1 \le p < \infty$. Then the Cesáro averages

$$A_n(T,f) = \frac{1}{n} \sum_{k=0}^{n-1} T^k(f), \quad n = 1, 2, \dots$$

converge μ -almost everywhere to some $\widehat{f} \in L^p(\Omega)$.

The first individual ergodic theorem for a semifinite von Neumann algebra (\mathcal{M}, τ) appeared in a seminal paper of Yeadon (J. London Math. Soc., 1977).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The first individual ergodic theorem for a semifinite von Neumann algebra (\mathcal{M}, τ) appeared in a seminal paper of Yeadon (J. London Math. Soc., 1977).

In that paper, it was proved that the Cesáro averages

$$A_n(T,x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k(x), \quad n = 1, 2, \dots$$
 (1)

generated by a positive Dunford-Schwartz operator T defined on the space $L^1(\mathcal{M}, \tau) + \mathcal{M}$ converge bilaterally almost uniform (b.a.u.) (in Egorov's sence) for every $x \in L^1(\mathcal{M}, \tau)$.

(P1) Can b.a.u. convergence $||e(A_n(T,x) - \hat{x})e||_{\infty} \to 0$, where *e* is a "big" projection in \mathcal{M} , be replaced by generally stronger almost uniform (a.u.) convergence: $||(A_n(T,x) - \hat{x})e||_{\infty} \to 0$?

(P1) Can b.a.u. convergence $||e(A_n(T,x) - \hat{x})e||_{\infty} \to 0$, where *e* is a "big" projection in \mathcal{M} , be replaced by generally stronger almost uniform (a.u.) convergence: $||(A_n(T,x) - \hat{x})e||_{\infty} \to 0$?

(P2) If the trace τ is infinite, how far beyond $L^1(\mathcal{M}, \tau)$ inside $L^1(\mathcal{M}, \tau) + \mathcal{M}$ can one go for this convergence to hold?

(P1) Can b.a.u. convergence $||e(A_n(T,x) - \hat{x})e||_{\infty} \to 0$, where *e* is a "big" projection in \mathcal{M} , be replaced by generally stronger almost uniform (a.u.) convergence: $||(A_n(T,x) - \hat{x})e||_{\infty} \to 0$?

(P2) If the trace τ is infinite, how far beyond $L^1(\mathcal{M}, \tau)$ inside $L^1(\mathcal{M}, \tau) + \mathcal{M}$ can one go for this convergence to hold?

These were partially answered by Junge and Xu (J. AMS, 2007), where it was shown that for $1 we have b.a.u. convergence and if <math>2 \le p < \infty$ the averages converge a.u.

(P1) Can b.a.u. convergence $||e(A_n(T,x) - \hat{x})e||_{\infty} \to 0$, where *e* is a "big" projection in \mathcal{M} , be replaced by generally stronger almost uniform (a.u.) convergence: $||(A_n(T,x) - \hat{x})e||_{\infty} \to 0$?

(P2) If the trace τ is infinite, how far beyond $L^1(\mathcal{M}, \tau)$ inside $L^1(\mathcal{M}, \tau) + \mathcal{M}$ can one go for this convergence to hold?

These were partially answered by Junge and Xu (J. AMS, 2007), where it was shown that for $1 we have b.a.u. convergence and if <math>2 \le p < \infty$ the averages converge a.u.

Since then the argument of Junge and Xu has been simplified but no major progress had been attained in answering these questions.

The main goal of this talk is to present a solution to (P1)+(P2):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The main goal of this talk is to present a solution to (P1)+(P2): There is a.u. convergence for all $1 \le p < \infty$ and if τ is infinite and \mathcal{M} is non-atomic, a.u. convergence of egrodic averages holds for $x \in L^1(\mathcal{M}, \tau) + \mathcal{M}$ if and only if $x \in \mathcal{R}_{\mu}$, the latter extending far beyond the family of noncommutative L^p -spaces, $1 \le p < \infty$.

- The main goal of this talk is to present a solution to (P1)+(P2):
- There is a.u. convergence for all $1 \le p < \infty$ and if τ is infinite and \mathcal{M} is non-atomic, a.u. convergence of egrodic averages holds for $x \in L^1(\mathcal{M}, \tau) + \mathcal{M}$ if and only if $x \in \mathcal{R}_{\mu}$, the latter extending far beyond the family of noncommutative L^p -spaces, $1 \le p < \infty$.

Besides, we establish a.u. convergence in \mathcal{R}_{μ} for a variety of noncommutative individual ergodic theorems, some of which new and some previously known to hold only for b.a.u. convergence.

Let \mathcal{M} be a semifinite von Neumann algebra equipped with a faithful normal semifinite trace τ . Let $\mathcal{P}(\mathcal{M})$ be the lattice of projections in \mathcal{M} . If **1** is the identity of \mathcal{M} and $e \in \mathcal{P}(\mathcal{M})$, we write $e^{\perp} = \mathbf{1} - e$.

Let \mathcal{M} be a semifinite von Neumann algebra equipped with a faithful normal semifinite trace τ . Let $\mathcal{P}(\mathcal{M})$ be the lattice of projections in \mathcal{M} . If **1** is the identity of \mathcal{M} and $e \in \mathcal{P}(\mathcal{M})$, we write $e^{\perp} = \mathbf{1} - e$.

Denote by $L^0 = L^0(\mathcal{M}, \tau)$ the *-algebra of τ -measurable operators affiliated with \mathcal{M} endowed with the measure topology.

Let \mathcal{M} be a semifinite von Neumann algebra equipped with a faithful normal semifinite trace τ . Let $\mathcal{P}(\mathcal{M})$ be the lattice of projections in \mathcal{M} . If **1** is the identity of \mathcal{M} and $e \in \mathcal{P}(\mathcal{M})$, we write $e^{\perp} = \mathbf{1} - e$.

Denote by $L^0 = L^0(\mathcal{M}, \tau)$ the *-algebra of τ -measurable operators affiliated with \mathcal{M} endowed with the measure topology.

If $1 \le p < \infty$, then the noncommutative L^p -space associated with (\mathcal{M}, τ) is defined as

$$L^{p} = L^{p}(\mathcal{M}, \tau) = \left\{ x \in L^{0} : \|x\|_{p} = (\tau(|x|^{p}))^{1/p} < \infty \right\},$$

where $|x| = (x^*x)^{1/2}$, the absolute value of x. Naturally, $L^{\infty}(\mathcal{M}) = \mathcal{M}$, equipped with the uniform norm $\|\cdot\|_{\infty}$.

Let $x \in L^0$, and let $\{e_{\lambda}\}_{\lambda \ge 0}$ be the spectral family of projections for the absolute value |x| of x. If t > 0, then a non-increasing rearrangement of x is defined as

$$\mu_t(x) = \inf\{\lambda > 0 : \tau(e_{\lambda}^{\perp}) \le t\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $x \in L^0$, and let $\{e_{\lambda}\}_{\lambda \ge 0}$ be the spectral family of projections for the absolute value |x| of x. If t > 0, then a non-increasing rearrangement of x is defined as

$$\mu_t(x) = \inf\{\lambda > 0 : \tau(e_{\lambda}^{\perp}) \le t\}.$$

A Banach space $(E, \|\cdot\|_E) \subset L^0$ is called symmetric if conditions

$$x \in E, y \in L^0, \mu_t(y) \le \mu_t(x)$$
 for all $t > 0$

imply that $y \in E$ and $||y||_E \le ||x||_E$.

Let $x \in L^0$, and let $\{e_{\lambda}\}_{\lambda \ge 0}$ be the spectral family of projections for the absolute value |x| of x. If t > 0, then a non-increasing rearrangement of x is defined as

$$\mu_t(x) = \inf\{\lambda > 0 : \tau(e_{\lambda}^{\perp}) \le t\}.$$

A Banach space $(E, \|\cdot\|_E) \subset L^0$ is called symmetric if conditions

$$x\in E,\ y\in L^0,\ \mu_t(y)\leq \mu_t(x)$$
 for all $t>0$

imply that $y \in E$ and $||y||_E \le ||x||_E$.

A Banach space $(E, \|\cdot\|_E) \subset L^0$ is called fully symmetric if

$$x \in E, y \in L^0, \int\limits_0^s \mu_t(y) dt \leq \int\limits_0^s \mu_t(x) dt$$
 for all $s > 0$

entail that $y \in E$ and $||y||_E \le ||x||_E$.

Define

$$\mathcal{R}_{ au} = \{x \in L^1 + \mathcal{M}: \ \mu_t(x) o 0 \ \text{as} \ t o \infty\}.$$

Define

$$\mathcal{R}_{ au} = \{x \in L^1 + \mathcal{M}: \ \mu_t(x) o 0 \ \text{as} \ t o \infty\}.$$

Theorem

Equipped with the norm

$$\|x\|_{L^1+\mathcal{M}}=\int_0^1\mu_t(x)dt,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \mathcal{R}_{μ} is a fully symmetric space.

Define

$$\mathcal{R}_{ au} = \{x \in L^1 + \mathcal{M}: \ \mu_t(x) \to 0 \ \text{ as } \ t \to \infty\}.$$

Theorem

Equipped with the norm

$$\|x\|_{L^1+\mathcal{M}}=\int_0^1\mu_t(x)dt,$$

 \mathcal{R}_{μ} is a fully symmetric space.

Proposition

If $\tau(\mathbf{1}) = \infty$, then a symmetric space $E \subset L^1 + \mathcal{M}$ is contained in \mathcal{R}_{τ} if and only if $\mathbf{1} \notin E$.

A linear operator $T: L^1 + \mathcal{M} \to L^1 + \mathcal{M}$ is called a Dunford-Schwartz operator if

 $\|T(x)\|_1 \leq \|x\|_1 \quad \forall x \in L^1 \quad \text{and} \quad \|T(x)\|_\infty \leq \|x\|_\infty \quad \forall x \in \mathcal{M}.$

If a Dunford-Schwartz operator T is positive, we write $T \in DS^+$.

A linear operator $T: L^1 + \mathcal{M} \to L^1 + \mathcal{M}$ is called a Dunford-Schwartz operator if

 $\|T(x)\|_1 \le \|x\|_1 \quad \forall x \in \mathcal{L}^1 \quad \text{and} \quad \|T(x)\|_\infty \le \|x\|_\infty \quad \forall x \in \mathcal{M}.$

If a Dunford-Schwartz operator T is positive, we write $T \in DS^+$. Given $T \in DS^+$ and $x \in L^1 + M$, recall that

$$A_n(T,x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k(x), \quad n = 1, 2, \dots$$

A linear operator $T: L^1 + \mathcal{M} \to L^1 + \mathcal{M}$ is called a Dunford-Schwartz operator if

 $\|T(x)\|_1 \le \|x\|_1 \quad \forall x \in L^1 \quad \text{and} \quad \|T(x)\|_\infty \le \|x\|_\infty \quad \forall x \in \mathcal{M}.$

If a Dunford-Schwartz operator T is positive, we write $T \in DS^+$. Given $T \in DS^+$ and $x \in L^1 + M$, recall that

$$A_n(T,x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k(x), \quad n = 1, 2, \dots$$

A sequence $\{x_n\} \subset L^0$ is said to converge to $\widehat{x} \in L^0$ almost uniformly (a.u.) (bilaterally almost uniformly (b.a.u.)) if for every $\epsilon > 0$ there exists $e \in \mathcal{P}(\mathcal{M})$ such that $\tau(e^{\perp}) \leq \epsilon$ and $\|(\widehat{x} - x_n)e\|_{\infty} \to 0$ (respectively, $\|e(\widehat{x} - x_n)e\|_{\infty} = 0$).

Theorem (Yeadon 1977)

Let $T \in DS^+$ and $x \in L^1$. Then the averages $A_n(T, x)$ converge b.a.u. to some $\hat{x} \in L^1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Yeadon 1977)

Let $T \in DS^+$ and $x \in L^1$. Then the averages $A_n(T, x)$ converge b.a.u. to some $\hat{x} \in L^1$.

Remark (Chilin-L 2015)

It can be seen that the iterating operators T that were considered by Yeadon can be uniquely extended to a positive Dunford-Schwartz operators, hence the assumption $T \in DS^+$.

Theorem (Yeadon 1977)

Let $T \in DS^+$ and $x \in L^1$. Then the averages $A_n(T, x)$ converge b.a.u. to some $\hat{x} \in L^1$.

Remark (Chilin-L 2015)

It can be seen that the iterating operators T that were considered by Yeadon can be uniquely extended to a positive Dunford-Schwartz operators, hence the assumption $T \in DS^+$.

Here is an extension of Yeadon's result:

Theorem (Junge-Xu 2007)

If $T \in DS^+$ and $x \in L^p$, $1 , then the averages <math>A_n(T, x)$ converge b.a.u. to some $\hat{x} \in L^p$. If $p \ge 2$, then these averages converge also a.u.

In fact, we have *a.u.* convergence in the above theorems:

Theorem (L 2016)

Let $T \in DS^+$ and $x \in L^p$, $1 \le p < \infty$. Then the averages $A_n(T, x)$ converge a.u. to some $\hat{x} \in L^p$.

In fact, we have *a.u.* convergence in the above theorems:

Theorem (L 2016)

Let $T \in DS^+$ and $x \in L^p$, $1 \le p < \infty$. Then the averages $A_n(T, x)$ converge a.u. to some $\hat{x} \in L^p$.

Proof of this result is based on the following notion.

Definition

Let $(X, \|\cdot\|)$ be a normed space. A sequence of maps $M_n : X \to L^0$ is called bilaterally uniformly equicontinuous in measure (b.u.e.m.) at zero if for every $\epsilon > 0$ and $\delta > 0$ there exists $\gamma > 0$ such that, given $x \in X$ with $||x|| < \gamma$, there is a projection $e \in \mathcal{P}(\mathcal{M})$ satisfying conditions

 $\tau(e^{\perp}) \leq \epsilon$ and $\sup_{n \in \mathbb{N}} \|eM_n(x)e\|_{\infty} \leq \delta.$

Remark

It is easy to see that, in the commutative case, bilateraly uniform equicontinuity in measure at zero of a sequence $M_n : X \to L^0$ is equivalent to the continuity in measure at zero of the maximal operator $M^*(f) = \sup_n |M_n(f)|, f \in X.$

Remark

It is easy to see that, in the commutative case, bilateraly uniform equicontinuity in measure at zero of a sequence $M_n : X \to L^0$ is equivalent to the continuity in measure at zero of the maximal operator $M^*(f) = \sup_n |M_n(f)|, f \in X.$

Proposition (Crucial Step)

Let $(X, \|\cdot\|)$ be a Banach space, $M_n : X \to L^0$ a sequence of linear maps that is b.u.e.m. at zero on X. Then the set

 $\{x \in X : \{M_n(x)\} \text{ converges a.u.}\}$

is closed in X.

Proposition

The sequence $\{A_n\}$ given by (1) is b.u.e.m. at zero on L^p , $1 \le p < \infty$.

Since the set $L^p \cap L^2$ is dense in L^p , $1 \le p < \infty$, and it can be shown that the sequence $\{A_n(x)\}$ converges a.u. whenever $x \in L^2$, the averages $A_n(x)$ converge a.u. for every $x \in L^p$. Q.E.D.

When $X = L^p$, $1 \le p < \infty$, we have the following result.

Theorem (Noncommutative Banach Principle)

Let $M_n : L^p \to L^0$ be a sequence of positive continuous (with respect to the measure topology in L^0) linear maps such that for every $x \in L^p$ and $\epsilon > 0$ there exists a projection $e \in \mathcal{P}(\mathcal{M})$ satisfying

$$au(e^{\perp}) \leq \epsilon$$
 and $\sup_n \|eM_n(x)e\|_{\infty} < \infty.$

Then the set $\{x \in X : \{M_n(x)\}\ \text{converges a.u.}\}$ is closed in L^p .

Here is an extension of the above to \mathcal{R}_{τ} :

Theorem

Let $T \in DS^+$ and $x \in \mathcal{R}_{\tau}$. Then the averages $A_n(T, x)$ converge a.u. to some $\hat{x} \in L^1 + \mathcal{M}$. Moreover, if $E \subset L^1 + \mathcal{M}$ is a fully symmetric space such that $\mathbf{1} \notin E$ $(E \subset \mathcal{R}_{\mu})$ and $x \in E$, then these averages converge a.u. to some $\hat{x} \in E$.

Here is an extension of the above to \mathcal{R}_{τ} :

Theorem

Let $T \in DS^+$ and $x \in \mathcal{R}_{\tau}$. Then the averages $A_n(T, x)$ converge a.u. to some $\hat{x} \in L^1 + \mathcal{M}$. Moreover, if $E \subset L^1 + \mathcal{M}$ is a fully symmetric space such that $\mathbf{1} \notin E$ $(E \subset \mathcal{R}_{\mu})$ and $x \in E$, then these averages converge a.u. to some $\hat{x} \in E$.

If the algebra \mathcal{M} is non-atomic, then \mathcal{R}_{μ} is the largest subspace of $L^1 + \mathcal{M}$ for which we have a.u. convergence of the averages (1):

Theorem

If $x \in (L^1 + M) \setminus \mathcal{R}_{\mu}$, then there is $T \in DS^+(\mathcal{M}, \tau)$ such that the sequence $\{A_n(T, x)\}$ does not converge a.u.

Let $\{T_{\mathbf{u}} : \mathbf{u} \in \mathbb{R}^d_+\}$ be a semigroup of contractions of L^1 which is continuous in the interior of \mathbb{R}^d_+ , that is,

$$\| T_{\mathbf{u}}(x) - T_{\mathbf{v}}(x) \|_1 o 0$$
 as $\mathbf{u} o \mathbf{v}$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

for all $x \in L^1$ and $\mathbf{v} = (v_1, \dots, v_d) \in \mathbb{R}^d_+$ with $v_i > 0$, $1 \le i \le d$.

Let $\{T_{\mathbf{u}} : \mathbf{u} \in \mathbb{R}^d_+\}$ be a semigroup of contractions of L^1 which is continuous in the interior of \mathbb{R}^d_+ , that is,

$$\| T_{\mathbf{u}}(x) - T_{\mathbf{v}}(x) \|_1
ightarrow 0$$
 as $\mathbf{u}
ightarrow \mathbf{v}$

for all $x \in L^1$ and $\mathbf{v} = (v_1, \dots, v_d) \in \mathbb{R}^d_+$ with $v_i > 0, 1 \le i \le d$.

Denote

$$A_t(x) = \frac{1}{t^d} \int_{[0,t]^d} T_{\mathbf{u}}(x) d\mathbf{u}, \ x \in L^1, \ t > 0.$$
 (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\{T_{\mathbf{u}} : \mathbf{u} \in \mathbb{R}^d_+\}$ be a semigroup of contractions of L^1 which is continuous in the interior of \mathbb{R}^d_+ , that is,

$$\|\mathcal{T}_{\mathbf{u}}(x) - \mathcal{T}_{\mathbf{v}}(x)\|_1
ightarrow 0$$
 as $\mathbf{u}
ightarrow \mathbf{v}$

for all $x \in L^1$ and $\mathbf{v} = (v_1, \dots, v_d) \in \mathbb{R}^d_+$ with $v_i > 0$, $1 \le i \le d$.

Denote

$$A_t(x) = \frac{1}{t^d} \int_{[0,t]^d} T_{\mathbf{u}}(x) d\mathbf{u}, \ x \in L^1, \ t > 0.$$
 (2)

The next theorem is a noncommutative extension of a theorem of Dunford and Schwartz.

Theorem

If $\{T_{\mathbf{u}} : \mathbf{u} \in \mathbb{R}^{d}_{+}\} \subset DS^{+}$ is a semigroup continuous on the interior of \mathbb{R}^{d}_{+} and $x \in L^{1}$. Then the averages $A_{t}(x)$ given by (2) converge a.u. to some $\hat{x} \in L^{1}$.

In particular, we have the following.

Corollary

Let $\{T_s\}_{s\geq 0} \subset DS^+$ be a semigroup that is strongly continuous on L^1 at every s > 0. Then the averages

$$\frac{1}{t}\int_0^t T_s(x)ds$$

converge a.u. for every $x \in L^1$ as $t \to \infty$.

In particular, we have the following.

Corollary

Let $\{T_s\}_{s\geq 0} \subset DS^+$ be a semigroup that is strongly continuous on L^1 at every s > 0. Then the averages

$$\frac{1}{t}\int_0^t T_s(x)ds$$

converge a.u. for every $x \in L^1$ as $t \to \infty$.

Let $(E, \|\cdot\|_E) \subset L^1 + \mathcal{M}$ be a symmetric space, and let $\{T_{\mathbf{u}} : \mathbf{u} \in \mathbb{R}^d_+\} \subset DS^+$ be a semigroup of contractions in E. We say that $\{T_{\mathbf{u}}\}$ is continuous in the interior of \mathbb{R}^d_+ on E, if

$$\|T_{\mathbf{u}}(x) - T_{\mathbf{v}}(x)\|_E
ightarrow 0$$
 as $\mathbf{u}
ightarrow \mathbf{v}$

for all $x \in E$, $\mathbf{v} = (v_1, \dots, v_d) \in \mathbb{R}^d_+$ with $v_i >_{\square} 0$, $1 \leq i \leq d$.

Denote, as before,

$$A_t(x) = \frac{1}{t^d} \int_{[0,t]^d} T_{\mathbf{u}}(x) d\mathbf{u}, \ x \in E, \ t > 0.$$
 (3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Denote, as before,

$$A_t(x) = \frac{1}{t^d} \int_{[0,t]^d} T_{\mathbf{u}}(x) d\mathbf{u}, \ x \in E, \ t > 0.$$
 (3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

Let $\{T_{\mathbf{u}} : \mathbf{u} \in \mathbb{R}^d_+\} \subset DS^+$ be a semigroup continuous in the interior of \mathbb{R}^d_+ on \mathcal{R}_τ and L^1 . Then for every $x \in \mathcal{R}_\tau$ the averages (3) converge a.u. as $t \to \infty$ to some $\hat{x} \in \mathcal{R}_\tau$.

Denote, as before,

$$A_t(x) = \frac{1}{t^d} \int_{[0,t]^d} T_{\mathbf{u}}(x) d\mathbf{u}, \ x \in E, \ t > 0.$$
 (3)

Theorem

Let $\{T_{\mathbf{u}} : \mathbf{u} \in \mathbb{R}^d_+\} \subset DS^+$ be a semigroup continuous in the interior of \mathbb{R}^d_+ on \mathcal{R}_{τ} and L^1 . Then for every $x \in \mathcal{R}_{\tau}$ the averages (3) converge a.u. as $t \to \infty$ to some $\hat{x} \in \mathcal{R}_{\tau}$.

Theorem

Let $\mathbf{1} \notin E \subset L^1 + \mathcal{M}$ be a fully symmetric space, and let $\{T_{\mathbf{u}} : \mathbf{u} \in \mathbb{R}^d_+\} \subset DS^+$ be a semigroup continuous in the interior of \mathbb{R}^d_+ on \mathcal{R}_τ , L^1 , and E. Then for every $x \in E$, the averages (3) converge a.u. as $t \to \infty$ to some $\hat{x} \in E$.

Let \mathbb{C}_1 be the unit circle in \mathbb{C} . A function $P : \mathbb{Z} \to \mathbb{C}$ is said to be a trigonometric polynomial if $P(k) = \sum_{j=1}^{s} z_j \lambda_j^k$, $k \in \mathbb{Z}$, for some $s \in \mathbb{N}$, $\{z_j\}_1^s \subset \mathbb{C}$, and $\{\lambda_j\}_1^s \subset \mathbb{C}_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \mathbb{C}_1 be the unit circle in \mathbb{C} . A function $P : \mathbb{Z} \to \mathbb{C}$ is said to be a trigonometric polynomial if $P(k) = \sum_{j=1}^{s} z_j \lambda_j^k$, $k \in \mathbb{Z}$, for some $s \in \mathbb{N}$, $\{z_j\}_1^s \subset \mathbb{C}$, and $\{\lambda_j\}_1^s \subset \mathbb{C}_1$.

- A sequence $\{\beta_k\}_{k=0}^{\infty} \subset \mathbb{C}$ is called bounded Besicovitch if
- (a) $\sup_k |\beta_k| \leq C < \infty;$
- (b) for every $\epsilon > 0$ there exists a trigonometric polynomial P such that

$$\limsup_{n} \frac{1}{n} \sum_{k=0}^{n-1} |\beta_k - P(k)| < \epsilon.$$

Theorem (Chilin-L-Skalski 2005)

Assume that M has a separable predual. Let $T \in DS^+$, and let $\{\beta_k\}$ be a bounded Besicovitch sequence. Then the averages

$$B_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} \beta_k T^k(x)$$
 (4)

converge b.a.u. for every $x \in L^1$ to some $\widehat{x} \in L^1$.

Here is an extension of the previous theorem:

Theorem

Let \mathcal{M} , T, and $\{\beta_k\}$ be as above. Then for every $x \in \mathcal{R}_{\tau}$ the averages (4) converge a.u. to some $\hat{x} \in L^1 + \mathcal{M}$.

Weighted noncommutative individual ergodic theorems

Now we shall present a noncommutative Wiener-Wintner theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Now we shall present a noncommutative Wiener-Wintner theorem. Denote

$$A_n(x,\lambda) = \frac{1}{n} \sum_{k=0}^{n-1} \lambda^k T^k(x), \qquad (5)$$

where $x \in L^1 + M$, $T \in DS^+$, and $\lambda \in \mathbb{C}_1$.

Now we shall present a noncommutative Wiener-Wintner theorem. Denote

$$A_n(x,\lambda) = \frac{1}{n} \sum_{k=0}^{n-1} \lambda^k T^k(x), \qquad (5)$$

where $x \in L^1 + \mathcal{M}$, $T \in DS^+$, and $\lambda \in \mathbb{C}_1$.

Definition

We say that $x \in L^1 + \mathcal{M}$ satisfies Wiener-Wintner property and we write $x \in WW$ if, given $\epsilon > 0$, there exists a projection $e \in P(\mathcal{M})$ with $\tau(e^{\perp}) \leq \epsilon$ such that the sequence $\{A_n(x, \lambda)e\}$ converges in $(\mathcal{M}, \|\cdot\|_{\infty})$ for all $\lambda \in \mathbb{C}_1$.

Weighted noncommutative individual ergodic theorems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Assume now that τ is finite, $T \in DS^+$ is an ergodic homomorphism, and $\tau \circ T = \tau$.

Assume now that τ is finite, $T \in DS^+$ is an ergodic homomorphism, and $\tau \circ T = \tau$.

Then we have the following noncommutative Wiener-Wintner theorem which generalizes the classical Wiener-Wintner theorem. It is an improvement of (L 2014) where the convergence was given in terms of the two-sided multiplication by a projection $e \in \mathcal{P}(\mathcal{M})$.

Assume now that τ is finite, $T \in DS^+$ is an ergodic homomorphism, and $\tau \circ T = \tau$.

Then we have the following noncommutative Wiener-Wintner theorem which generalizes the classical Wiener-Wintner theorem. It is an improvement of (L 2014) where the convergence was given in terms of the two-sided multiplication by a projection $e \in \mathcal{P}(\mathcal{M})$.

Theorem

 $L^1 \subset WW$, that is, for every $x \in L^1$ and $\epsilon > 0$ there exists a projection $e \in P(\mathcal{M})$ such that $\tau(e^{\perp}) \leq \epsilon$ and $\{A_n(x, \lambda)e\}$ converges in $(\mathcal{M}, \| \cdot \|_{\infty})$ for all $\lambda \in \mathbb{C}_1$.

(日) (同) (三) (三) (三) (○) (○)

Every individual ergodic theorem for \mathcal{R}_{τ} above (except possibly the previous one) is valid for any noncommutative fully symmetric space $E \subset \mathcal{R}_{\tau}$ (with the limit $\hat{x} \in E$). We shall give a few examples of noncommutative fully symmetric subspaces of \mathcal{R}_{τ} .

Every individual ergodic theorem for \mathcal{R}_{τ} above (except possibly the previous one) is valid for any noncommutative fully symmetric space $E \subset \mathcal{R}_{\tau}$ (with the limit $\hat{x} \in E$). We shall give a few examples of noncommutative fully symmetric subspaces of \mathcal{R}_{τ} .

Recall that $\tau(\mathbf{1}) = \infty$. As we have noticed, a symmetric space $E \subset L^1 + \mathcal{M}$ is contained in \mathcal{R}_{τ} if and only if $\mathbf{1} \notin E$.

Every individual ergodic theorem for \mathcal{R}_{τ} above (except possibly the previous one) is valid for any noncommutative fully symmetric space $E \subset \mathcal{R}_{\tau}$ (with the limit $\hat{x} \in E$). We shall give a few examples of noncommutative fully symmetric subspaces of \mathcal{R}_{τ} .

Recall that $\tau(\mathbf{1}) = \infty$. As we have noticed, a symmetric space $E \subset L^1 + \mathcal{M}$ is contained in \mathcal{R}_{τ} if and only if $\mathbf{1} \notin E$.

1. Let Φ be an Orlicz function, that is, $\Phi : [0, \infty) \to [0, \infty)$ is a convex continuous at 0 function such that $\Phi(0) = 0$ and $\Phi(u) > 0$ if $u \neq 0$.

Every individual ergodic theorem for \mathcal{R}_{τ} above (except possibly the previous one) is valid for any noncommutative fully symmetric space $E \subset \mathcal{R}_{\tau}$ (with the limit $\hat{x} \in E$). We shall give a few examples of noncommutative fully symmetric subspaces of \mathcal{R}_{τ} .

Recall that $\tau(\mathbf{1}) = \infty$. As we have noticed, a symmetric space $E \subset L^1 + \mathcal{M}$ is contained in \mathcal{R}_{τ} if and only if $\mathbf{1} \notin E$.

1. Let Φ be an Orlicz function, that is, $\Phi : [0, \infty) \to [0, \infty)$ is a convex continuous at 0 function such that $\Phi(0) = 0$ and $\Phi(u) > 0$ if $u \neq 0$.

Denote

$$L^{\Phi} = \left\{ x \in L^0 : \ \tau \left(\Phi \left(rac{|x|}{a}
ight)
ight) < \infty \ ext{ for some } a > 0
ight\}.$$

be the corresponding noncommutative Orlicz space.

Let

$$\|x\|_{\Phi} = \inf \left\{ a > 0 : \tau \left(\Phi \left(\frac{|x|}{a} \right) \right) \le 1 \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

be the Luxemburg norm in L^{Φ} .

Let

$$\|x\|_{\Phi} = \inf\left\{a > 0: \tau\left(\Phi\left(\frac{|x|}{a}\right)\right) \le 1\right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

be the Luxemburg norm in L^{Φ} .

Since $\tau(\mathbf{1}) = \infty$, we have $\tau\left(\Phi\left(\frac{1}{a}\right)\right) = \infty$ for all a > 0, hence $\mathbf{1} \notin L^{\Phi}$, hence $L^{\Phi} \subset \mathcal{R}_{\mu}$.

Let

$$\|x\|_{\Phi} = \inf\left\{a > 0: \tau\left(\Phi\left(\frac{|x|}{a}\right)\right) \le 1\right\}$$

be the Luxemburg norm in L^{Φ} .

Since $\tau(\mathbf{1}) = \infty$, we have $\tau\left(\Phi\left(\frac{1}{a}\right)\right) = \infty$ for all a > 0, hence $\mathbf{1} \notin L^{\Phi}$, hence $L^{\Phi} \subset \mathcal{R}_{\mu}$.

2. A space $(E, \|\cdot\|_E)$ is said to have order continuous norm if $\|x_n\|_E \downarrow 0$ whenever $x_n \in E_+$ and $x_n \downarrow 0$.

Let

$$\|x\|_{\Phi} = \inf\left\{a > 0: \tau\left(\Phi\left(\frac{|x|}{a}\right)\right) \le 1\right\}$$

be the Luxemburg norm in L^{Φ} .

Since $\tau(\mathbf{1}) = \infty$, we have $\tau\left(\Phi\left(\frac{1}{a}\right)\right) = \infty$ for all a > 0, hence $\mathbf{1} \notin L^{\Phi}$, hence $L^{\Phi} \subset \mathcal{R}_{\mu}$.

2. A space $(E, \|\cdot\|_E)$ is said to have order continuous norm if $\|x_n\|_E \downarrow 0$ whenever $x_n \in E_+$ and $x_n \downarrow 0$.

If $E = E(\mathcal{M}, \tau)$ is a noncommutative fully symmetric space with order continuous norm, then $\tau(\{|x| > \lambda\}) < \infty$ for all $x \in E$ and $\lambda > 0$, so $E \subset \mathcal{R}_{\tau}$.

If $E = E(0, \infty)$ is a symmetric function space, then the space $E(\mathcal{M}) = \{x \in L^0 : \mu_t(x) \in E\}$ with $||x||_{E(\mathcal{M})} = ||\mu_t(x)||_E$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is a symmetric space.

If $E = E(0, \infty)$ is a symmetric function space, then the space $E(\mathcal{M}) = \{x \in L^0 : \mu_t(x) \in E\}$ with $||x||_{E(\mathcal{M})} = ||\mu_t(x)||_E$

is a symmetric space.

3. Let φ be an increasing concave function on $[0, \infty)$ with $\varphi(0) = 0$ and $\varphi(t) > 0$ for some t > 0.

If $E = E(0, \infty)$ is a symmetric function space, then the space $E(\mathcal{M}) = \{x \in L^0 : \mu_t(x) \in E\}$ with $\|x\|_{E(\mathcal{M})} = \|\mu_t(x)\|_E$

is a symmetric space.

3. Let φ be an increasing concave function on $[0, \infty)$ with $\varphi(0) = 0$ and $\varphi(t) > 0$ for some t > 0.

Denote

$$\Lambda_{\varphi}(\mathcal{M},\tau) = \left\{ x \in L^0(\mathcal{M},\tau) : \ \|x\|_{\Lambda_{\varphi}} = \int_0^\infty \mu_t(x) d\varphi(t) < \infty \right\},$$

the corresponding noncommutative Lorentz space.

If $E = E(0, \infty)$ is a symmetric function space, then the space $E(\mathcal{M}) = \{x \in L^0 : \mu_t(x) \in E\}$ with $\|x\|_{E(\mathcal{M})} = \|\mu_t(x)\|_E$

is a symmetric space.

3. Let φ be an increasing concave function on $[0, \infty)$ with $\varphi(0) = 0$ and $\varphi(t) > 0$ for some t > 0.

Denote

$$\Lambda_{arphi}(\mathcal{M}, au) = \left\{ x \in L^0(\mathcal{M}, au): \ \|x\|_{\Lambda_{arphi}} = \int_0^\infty \mu_t(x) darphi(t) < \infty
ight\},$$

the corresponding noncommutative Lorentz space.

Since $\Lambda_{\varphi}(0,\infty)$ is a fully symmetric function space and $\Lambda_{\varphi}(0,\infty) \subset \mathcal{R}_{\mu}(0,\infty)$ whenever $\varphi(\infty) = \infty$, the noncommutative fully symmetric space $\Lambda_{\varphi}(\mathcal{M},\tau)$ is contained in \mathcal{R}_{τ} .

4. Let $E(0,\infty)$ be a fully symmetric function space, and let $D_s: E(0,\infty) \to E(0,\infty)$, s > 0, be the bounded linear operator given by $D_s(f)(t) = f(t/s)$, t > 0.

4. Let $E(0,\infty)$ be a fully symmetric function space, and let $D_s: E(0,\infty) \to E(0,\infty)$, s > 0, be the bounded linear operator given by $D_s(f)(t) = f(t/s)$, t > 0.

The Boyd index q_E is defined as

$$q_E = \lim_{s \to +0} \frac{\log s}{\log \|D_s\|}.$$

4. Let $E(0,\infty)$ be a fully symmetric function space, and let $D_s: E(0,\infty) \to E(0,\infty)$, s > 0, be the bounded linear operator given by $D_s(f)(t) = f(t/s)$, t > 0.

The Boyd index q_E is defined as

$$q_E = \lim_{s \to +0} \frac{\log s}{\log \|D_s\|}.$$

It is known that $1 \leq q_E \leq \infty$. If $q_E < \infty$, then $1 \notin E(\mathcal{M})$, and so $E(\mathcal{M}) \subset \mathcal{R}_{\tau}$.

4. Let $E(0,\infty)$ be a fully symmetric function space, and let $D_s: E(0,\infty) \to E(0,\infty)$, s > 0, be the bounded linear operator given by $D_s(f)(t) = f(t/s)$, t > 0.

The Boyd index q_E is defined as

$$q_E = \lim_{s \to +0} \frac{\log s}{\log \|D_s\|}.$$

It is known that $1 \leq q_E \leq \infty$. If $q_E < \infty$, then $\mathbf{1} \notin E(\mathcal{M})$, and so $E(\mathcal{M}) \subset \mathcal{R}_{\tau}$.

THANK YOU!