Some Cheeger-Gromov-Taylor Type Compactness Theorems for Ricci Solitons

Homare TADANO Tokyo University of Science, JAPAN

XIXth International Conference Geometry, Integrability and Quantization June 6, 2017 Varna, Bulgaria

Aim & Plan

1. Introduction

A Brief Review of Ricci Solitons

- Definition, Background, Properties, and Examples

A Brief Review of Some Classical Compactness Theorems

2. Results

Some Compactness Theorems for Ricci Solitons

Ambrose and Cheeger-Gromov-Taylor Type Theorems
 via Bakry-Èmery and Modified Ricci Curvatures

Notation

(M,g) : an *n*-dimensional **connected** Riemannian manifold without boundary,

- $\nabla\;$: the Levi-Civita connection with respect to g,
- $\mathfrak{X}(M)$: the set of **smooth** vector fields on M,
- $\mathcal{C}^{\infty}(M)$: the set of **smooth** functions on M.

A gradient vector field and a Hessian of $f \in \mathcal{C}^{\infty}(M)$ are defined by

$$g(\nabla f, X) = df(X)$$
 and $\operatorname{Hess} f(X, Y) = g(\nabla_X \nabla f, Y), \quad X, Y \in \mathfrak{X}(M),$

respectively. A curvature tensor, a Ricci curvature, and a scalar curvature are defined by

$$R(X,Y)Z := \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

$$\operatorname{Ric}_g(X,Y) := \sum_{i=1}^n g(R(e_i,X)Y,e_i), \quad \text{and} \quad R := \sum_{i=1}^n \operatorname{Ric}_g(e_i,e_i),$$

respectively. Here $X, Y, Z \in \mathfrak{X}(M)$ and $\{e_i\}_{i=1}^n$ is an orthonormal frame of M.

Ricci Solitons

Definition (Hamilton 1982) A **Ricci soliton** is a Riemannian manifold (M, g) admitting a vector field $V \in \mathfrak{X}(M)$ and a real constant $\lambda \in \mathbb{R}$ such that

$$\operatorname{Ric}_g + \frac{1}{2}\mathcal{L}_V g = \lambda g,$$

where \mathcal{L}_V is the Lie derivative in the direction of V. The soliton (M,g) is

shrinking if $\lambda > 0$, steady if $\lambda = 0$, expanding if $\lambda < 0$.

Remark A typical example of Ricci solitons is an **Einstein manifold**, where V is given by a Killing vector field. In this case, we say that the soliton is **trivial**.

If $V = \nabla f$ for some smooth function $f : M \to \mathbb{R}$, then the soliton (M, g) is called a gradient Ricci soliton. In such a case, the soliton satisfies

$$\operatorname{Ric}_g + \operatorname{Hess} f = \lambda g.$$

We refer to f as a **potential function** of the gradient Ricci soliton.

A gradient Ricci soliton

$$\operatorname{Ric}_g + \operatorname{Hess} f = \lambda g$$

A typical example of gradient Ricci solitons is the **Gaussian soliton** (\mathbb{R}^n, g_0) .

- g_0 is the canonical flat metric on \mathbb{R}^n .
- a potential function $f : \mathbb{R}^n \to \mathbb{R}$ is given by $f(x) = \frac{\lambda}{2} |x|^2$ ($\lambda > 0$ or $\lambda < 0$).

Remark The Gaussian soliton is **non-compact**.

A Ricci soliton

$$\operatorname{Ric}_g + \frac{1}{2}\mathcal{L}_V g = \lambda g$$

Given a Ricci soliton (M,g), we may define a time-dependent vector field by $W_t := -\frac{1}{2\lambda t}V$. We denote by φ_t the flow generated by W_t . The metric

$$g(t) = -2\lambda t \varphi_t^* g$$

is a solution to the Ricci flow

$$\frac{\partial g}{\partial t}(t) = -2\operatorname{Ric}_{g(t)}.$$

Background and Motivation

A Ricci soliton $\operatorname{Ric}_g + \frac{1}{2}\mathcal{L}_V g = \lambda g$

- Introduced by Hamilton (1982)
- A natural generalization of an Einstein manifold
- The Ricci flow has achieved great success in **finding canonical metrics**
- Ricci solitons play important roles in the Ricci flow
 - Correspond to **self-similar solutions** to the flow
 - Arise as **singularity models** of the flow
- Intimately related to Li-Yau-Hamilton type estimates
 - Steady Ricci solitons achieve the equality in the estimates
- Ricci solitons play important roles in **Superstring Theory**

Properties of Ricci Solitons

A Ricci soliton
$$\operatorname{Ric}_g + \frac{1}{2}\mathcal{L}_V g = \lambda g$$
 is

shrinking if $\lambda > 0$, steady if $\lambda = 0$, expanding if $\lambda < 0$.

Theorem (Perelman 2002) Any compact Ricci soliton must be gradient.

Theorem (Hamilton 1993) Any compact **steady** or **expanding gradient** Ricci soliton must be **trivial**.

Theorem (Hamilton 1986 for n = 2, Ivey 1992 for n = 3) In dimension $n \leq 3$, any compact shrinking Ricci soliton must be trivial.

Some Examples of Ricci Solitons

Compact Case

- Koiso 1990, Cao 1994 : shrinking gradient Kähler Ricci solitons
 − P¹(ℂ)-bundles over Kähler-Einstein manifolds, e.g. ℂP²# ℂP²
- Wang and Zhu 2003 : shrinking gradient Kähler Ricci solitons – Toric Fano Kähler manifolds, e.g. $\mathbb{CP}^2 \# \overline{2\mathbb{CP}^2}$

Complete Non-Compact Case

- Hamilton 1986 : steady gradient Ricci solitons - Cigar solitons $\left(\mathbb{R}^2, \frac{dx^2+dy^2}{1+x^2+y^2}\right)$ with $f = -\log(1+x^2+y^2)$
- Futaki and Wang 2009 : expanding gradient Kähler Ricci solitons
 - Cone manifolds over compact Sasaki manifolds

Curvature and Topology

One of the most natural and important topics in Riemannian geometry is the relation between **curvature** and **topology** of underlying manifolds.

Theorem (Lohkamp 1992) Any *n*-dimensional manifold M, $n \ge 3$, admits a complete Riemannian metric g whose Riemannian curvature satisfies

 $-a(n) \leq \operatorname{Rm} \leq -b(n),$

where a(n) > b(n) > 0 are positive constants depending only on n.

Corollary (Lohkamp 1992) Any *n*-dimensional manifold M, $n \ge 3$, admits a complete Riemannian metric g whose Ricci curvature is everywhere negative.

Remark Corollary above says that there are **no obstructions** to the existence of complete Riemannian metrics with negative Ricci curvature.

Myers's Theorem

Natural questions to ask about a complete Riemannian manifold (M,g) are

- When is *M* compact?
- How large is the **diameter** of *M*?

Theorem (Myers 1941) Let (M,g) be an *n*-dimensional complete Riemannian manifold. If there exists a positive constant $\lambda > 0$ such that

$$\operatorname{Ric}_g(X, X) \ge \lambda g(X, X), \quad X \in \mathfrak{X}(M),$$

then M is compact with finite fundamental group. Moreover,

diam
$$(M,g) \leqslant \pi \sqrt{\frac{n-1}{\lambda}}$$

Ambrose's Theorem

Theorem (Ambrose 1956) Let (M,g) be a complete Riemannian manifold. Suppose that there exists a point $p \in M$ for which every geodesic $\gamma : [0, +\infty) \to M$ emanating from p satisfies

$$\int_0^{+\infty} \operatorname{Ric}_g(\dot{\gamma}(t), \dot{\gamma}(t)) dt = +\infty.$$

Then (M,g) is compact.

Remark Ambrose's theorem above **does not require** the Ricci curvature to be everywhere non-negative. Moreover, since

$$\operatorname{Ric}_g \geqslant \lambda g \quad (\lambda > 0) \quad \Longrightarrow \quad \int_0^{+\infty} \operatorname{Ric}_g(\dot{\gamma}(t), \dot{\gamma}(t)) dt = +\infty,$$

the compactness result in Myers's theorem follows from Ambrose's theorem.

Cheeger-Gromov-Taylor's Theorem

Theorem (Cheeger, Gromov, and Taylor 1981) Let (M,g) be an *n*-dimensional complete Riemannian manifold. Suppose that there exist a point $p \in M$ and positive constants $r_0 > 0$ and v > 0 such that

$$\operatorname{Ric}_{g}(x) \ge (n-1)\frac{\left(\frac{1}{4} + \boldsymbol{v}^{2}\right)}{d^{2}(x,p)}$$

for all $x \in M$ satisfying $d(x,p) \ge r_0$, where d(x,p) is the distance between x and p. Then (M,g) is compact. Moreover, the diameter from p satisfies

diam_p(M, g)
$$\leq r_0 \exp\left(\frac{\pi}{v}\right)$$
.

Remark Theorem above is **not true** if v = 0. In fact, the Euclidean space \mathbb{R}^n equipping with the metric $dr^2 + rg(\theta)$ outside some compact set is not compact and the Ricci curvature satisfies the condition as in Theorem with v = 0, where $g(\theta)$ is the standard metric on the sphere \mathbb{S}^{n-1} .

Modified and Bakry-Émery Ricci Curvatures

Let (M,g) be an *n*-dimensional complete Riemannian manifold, $V \in \mathfrak{X}(M)$ and $f \in \mathcal{C}^{\infty}(M)$. We put

$$\operatorname{Ric}_V := \operatorname{Ric}_g + \frac{1}{2}\mathcal{L}_V g, \quad \operatorname{Ric}_f := \operatorname{Ric}_g + \operatorname{Hess} f$$

and call them a **modified Ricci curvature** and a **Bakry-Émery Ricci curvature**, respectively. We also put

$$\Delta_V := \Delta_g - V \cdot \nabla, \quad \Delta_f := \Delta_g - \nabla f \cdot \nabla$$

and call them a V-Laplacian and a Witten-Laplacian, respectively.

• Good substitutes of the Ricci curvature and the Laplacian to establish

Eigenvalue estimates, Li-Yau Harnack inequalities, Liouville theorems,

Question Are classical results for Einstein manifolds true for the solitons ?

Remark The shrinking Gaussian soliton (\mathbb{R}^n, g_0) is **non-compact**.

A Compactness Theorem for Ricci Solitons

Theorem (Fernández-López and García-Río 2004) Let (M,g) be a complete Riemannian manifold satisfying

$$\operatorname{Ric}_V := \operatorname{Ric}_g + \frac{1}{2}\mathcal{L}_V g \ge \lambda g$$

for a positive constant $\lambda > 0$. Then

 $M ext{ is compact } \iff |V| ext{ is bounded on } M.$

Moreover, if M is compact, then the fundamental group satisfies

 $|\pi_1(M)| < +\infty.$

Theorem (Wylie 2007) The finiteness of $\pi_1(M)$ remains valid under the completeness of (M, g) and a positive lower bound on Ric_V .

A Diameter Bound via Ric_V

Theorem (Limoncu 2009) Let (M,g) be an *n*-dimensional complete Riemannian manifold satisfying

$$\operatorname{Ric}_V := \operatorname{Ric}_g + \frac{1}{2}\mathcal{L}_V g \ge \lambda g$$

for a positive constant $\lambda > 0$. If $|V| \leq k$ for a non-negative constant $k \geq 0$, then M is compact. Moreover,

diam
$$(M,g) \leq \frac{\pi}{\lambda} \left(\frac{\mathbf{k}}{\sqrt{2}} + \sqrt{\frac{\mathbf{k}^2}{2} + (n-1)\lambda} \right).$$

Remark Recently, under the same assumption as in Theorem above, the upper diameter bound above was improved to

diam
$$(M,g) \leqslant \frac{1}{\lambda} \left(2\mathbf{k} + \sqrt{4\mathbf{k}^2 + (n-1)\lambda\pi^2} \right)$$

By taking k = 0, Theorem above is reduced to the Myers's theorem.

A Diameter Bound via Ric_f

Theorem (Wei and Wylie 2007) Let (M,g) be an *n*-dimensional complete Riemannian manifold satisfying

$$\operatorname{Ric}_f := \operatorname{Ric}_g + \operatorname{Hess} f \ge \lambda g$$

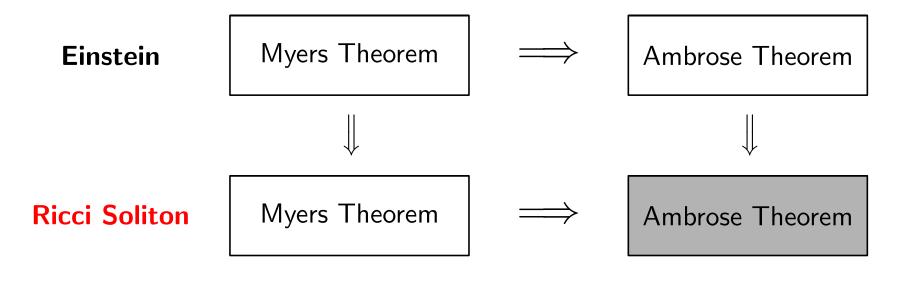
for a positive constant $\lambda > 0$. If $|f| \leq k$ for a non-negative constant $k \geq 0$, then M is compact. Moreover,

diam
$$(M,g) \leqslant \pi \sqrt{\frac{n-1}{\lambda}} + \frac{4\mathbf{k}}{\sqrt{(n-1)\lambda}}.$$

Remark Recently, under the same assumption as in Theorem above, the upper diameter bound above was improved to

diam
$$(M,g) \leqslant \frac{\pi}{\sqrt{\lambda}}\sqrt{n-1+\frac{8k}{\pi}}.$$

By taking k = 0, Theorem above is reduced to the Myers's theorem.

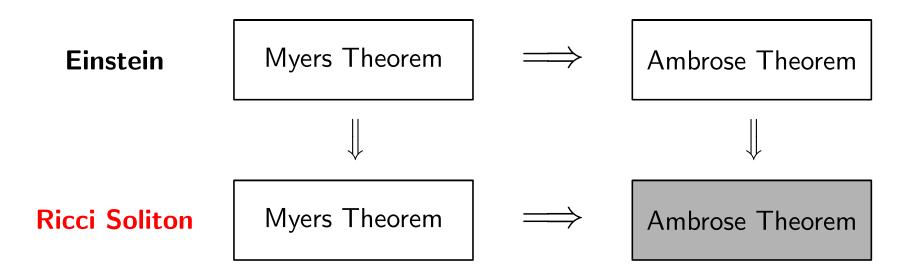


Theorem (— **2015)** Let (M,g) be a complete Riemannian manifold. Suppose that there exists a point $p \in M$ for which every geodesic γ : $[0, +\infty) \to M$ emanating from p satisfies

$$\operatorname{Ric}_V(\dot{\gamma}(t), \dot{\gamma}(t))dt = +\infty$$

and $|V| \leq k$ for a non-negative constant $k \geq 0$. Then (M, g) is compact.

Remark An Ambrose type theorem above was already proved by Zhang (2013) in the case where $V = \nabla f$.



Theorem (— **2016)** Let (M,g) be a complete Riemannian manifold. Suppose that there exists a point $p \in M$ for which every geodesic γ : $[0, +\infty) \to M$ emanating from p satisfies

$$\int_0^{+\infty} \operatorname{Ric}_f(\dot{\gamma}(t), \dot{\gamma}(t)) dt = +\infty$$

and $|f| \leq k$ for a non-negative constant $k \geq 0$. Then (M, g) is compact.

Some Cheeger-Gromov-Taylor Type Compactness Theorems via Modified Ricci Curvature

Theorem (Soylu 2016) Let (M,g) be an *n*-dimensional complete Riemannian manifold. Suppose that there exist a point $p \in M$ and positive constants $r_0 > 0$ and v > 0 such that

$$\operatorname{Ric}_{f}(x) \ge (n-1)\frac{\left(\frac{1}{4} + \boldsymbol{v}^{2}\right)}{d^{2}(x,p)}$$

for all $x \in M$ satisfying $d(x,p) \ge r_0$, where d(x,p) is the distance between x and p. If $|f| \le (n-1)k$ for a non-negative constant $k \ge 0$, then (M,g) is compact. Moreover, the diameter from p satisfies

diam_p(M,g)
$$\leq r_0 \exp\left(\frac{1}{v^2}\sqrt{8k^2 + \pi^2 v^2 + 4k\sqrt{4k^2 + \pi^2 v^2 (1+4v^2)}}\right)$$

Remark By taking k = 0, Theorem above is reduced to the Cheeger-Gromov-Taylor's compactness theorem.

Recall Wei and Wylie (2007) proved that a complete Riemannian manifold (M, g) with a positive lower bound on the Bakry-Émery Ricci curvature $\operatorname{Ric}_{f} \geq \lambda g$ $(\lambda > 0)$ is compact if $|f| \leq k$ for some non-negative constant $k \geq 0$.

Theorem (Limoncu 2011) Let (M,g) be an *n*-dimensional complete Riemannian manifold satisfying

 $\operatorname{Ric}_f \ge \lambda g$

for a positive constant $\lambda > 0$. Suppose that there exist a point $p \in M$ and a non-negative constant $k \ge 0$ such that

$$|
abla f|(x)\leqslant rac{k}{d(x,p)}$$

for all $x \in M \setminus \{p\}$, where d(x, p) is the distance between x and p. Then (M, g) is compact. Moreover, the diameter from p satisfies

diam_p(M,g)
$$\leq \frac{\pi}{\sqrt{\lambda}}\sqrt{n-1+4k}$$
.

Theorem (— **2016)** Let (M, g) be an *n*-dimensional complete Riemannian manifold. Suppose that there exist a point $p \in M$ and positive constants $r_0 > 0$ and v > 0 such that

$$\operatorname{Ric}_{V}(x) \ge (n-1)\frac{\left(\frac{1}{4} + \boldsymbol{v}^{2}\right)}{d^{2}(x,p)}$$

for all $x \in M$ satisfying $d(x,p) \ge r_0$, where d(x,p) is the distance between x and p. If there exists a non-negative constant $k \ge 0$ such that

$$|V|(x) \leqslant rac{(n-1)k}{d(x,p)}$$
 and $k < v^2$

for all $x \in M \setminus \{p\}$. Then (M,g) is compact. Moreover, the diameter from p satisfies

diam_p(M,g)
$$\leq r_0 \exp\left(\frac{2\mathbf{k} + \sqrt{4\mathbf{k}^2 + (v^2 - \mathbf{k})\pi^2}}{v^2 - \mathbf{k}}\right).$$

Remark By taking k = 0, Theorem above is reduced to the Cheeger-Gromov-Taylor's compactness theorem.

m-Modified and *m*-Bakry-Émery Ricci Curvatures

Let (M,g) be an *n*-dimensional complete Riemannian manifold, $V \in \mathfrak{X}(M)$ and $f \in \mathcal{C}^{\infty}(M)$. For $m \in [n, +\infty)$, we put

$$\operatorname{Ric}_{V}^{m} := \begin{cases} \operatorname{Ric}_{g} & m = n, \\ \operatorname{Ric}_{g} + \frac{1}{2}\mathcal{L}_{V}g - \frac{1}{m-n}V^{*} \otimes V^{*} & m > n, \end{cases}$$
$$\operatorname{Ric}_{f}^{m} := \begin{cases} \operatorname{Ric}_{g} & m = n, \\ \operatorname{Ric}_{g} + \operatorname{Hess} f - \frac{1}{m-n}df \otimes df & m > n \end{cases}$$

and call them an *m*-modified Ricci curvature and an *m*-Bakry-Émery Ricci curvature, respectively. Here V^* is the metric dual of V with respect to g.

- **Good substitutes** of the Ricci curvature
- Important tools in **Optimal Transport Theory** by Lott, Sturm and Villani
- Play important roles in **Perelman's entropy formulas** for the Ricci flow

Theorem (Limoncu 2009) Let (M,g) be an *n*-dimensional complete Riemannian manifold. Suppose that there exists a positive constant $\lambda > 0$ such that

 $\operatorname{Ric}_V^m \ge \lambda g,$

where $m \in [n, +\infty)$. Then (M, g) is compact. Moreover,

diam
$$(M,g) \leqslant \frac{\pi}{\sqrt{\lambda}}\sqrt{m-1}.$$

Remark The Myers type theorem above was already proved by Qian (1995) in the case where $V = \nabla f$.

Ric_g	Myers type	Ambrose type	C-G-T type
Ric_V	FL-GR, Limoncu, —	Zhang, —	
Ric_{f}	Wei-Wylie, Limoncu, —		Soylu
Ric_V^m	Limoncu	???	???
$\operatorname{Ric}_{f}^{m}$	Qian	???	???

Theorem (— **2015)** Let (M, g) be an *n*-dimensional complete Riemannian manifold. Suppose that there exists a point $p \in M$ for which every geodesic $\gamma : [0, +\infty) \to M$ emanating from *p* satisfies $\int_{0}^{+\infty} \operatorname{Ric}_{V}^{m}(\dot{\gamma}(t), \dot{\gamma}(t))dt = +\infty,$ where $m \in [n, +\infty)$. Then (M, g) is compact.

Remark The Ambrose type theorem above was already proved by Cavalcante, Oliveira and Santos (2015) in the case where $V = \nabla f$. The key ingredient in proving an Ambrose type theorem above is the Riccati inequality for the *m*-modified Ricci curvature

$$\operatorname{Ric}_{V}^{m}(\dot{\gamma},\dot{\gamma}) \leqslant -\dot{m}_{V} - \frac{(m_{V})^{2}}{m-1}, \quad m_{V} := \Delta_{V} d$$

which may be derived by applying the Bochner-Weitzenböck formula

$$\frac{1}{2}\Delta_V |\nabla u|^2 = |\operatorname{Hess} u|^2 + \operatorname{Ric}_V (\nabla u, \nabla u) + g(\nabla \Delta_V u, \nabla u), \quad u \in \mathcal{C}^\infty(M)$$

to the distance function u(x) = d(x, p). This formula was proved by Li (2014).

A Cheeger-Gromov-Taylor Type Compactness Theorem via m-Modified Ricci Curvature

Theorem (— **2016)** Let (M, g) be an *n*-dimensional complete Riemannian manifold. Suppose that there exist a point $p \in M$ and positive constants $r_0 > 0$ and v > 0 such that

$$\operatorname{Ric}_{V}^{m}(x) \ge (m-1)\frac{\left(\frac{1}{4} + \boldsymbol{v}^{2}\right)}{d^{2}(x,p)}$$

for all $x \in M$ satisfying $d(x,p) \ge r_0$, where $m \in [n, +\infty)$ and d(x,p) is the distance between x and p. Then (M,g) is compact. Moreover, the diameter from p satisfies

diam_p(M, g)
$$\leq r_0 \exp\left(\frac{\pi}{v}\right)$$
.

Remark A similar Cheeger-Gromov-Taylor type compactness theorem via m-Bakry-Émery Ricci curvature was established by Wang (2013).

Some Myers Type Theorems via (m-) Bakry-Émery and (m-) Modified Ricci Curvatures

Ric_g	Myers	Ambrose	Cheeger-Gromov-Taylor
Ric_V	FL-GR, Limoncu, —	Zhang, —	
Ric_{f}	Wei-Wylie, Limoncu, ——		Soylu
Ric_V^m	Limoncu		Wang, —
$\operatorname{Ric}_{f}^{m}$	Qian	C-O-S	

References

Lower and Upper Diameter Bounds for Compact Ricci Solitons

- 1. ____, Preprint (2016)
- 2. ___, J. Math. Phys. **58** (2017)
- 3. ___, Diff. Geom. Appl. 44 (2016)

Myers Type Theorems for Ricci Solitons

- 4. ____, to appear in Pacific J. Math. (2017)
- 5. ____, Rend. Semin. Mat. Univ. Politec. Torino 73 (2015)

Some Generalizations of Ricci Solitons

- 6. ____, Preprint (2016)
- 7. ____, Ann. Global Anal. Geom. 49 (2016)
- 8. ____, Internat. J. Math. 26 (2015)

Thank You for Your Attention!

To-ji Temple (Kyoto, JAPAN)