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Notation

(M, g) : an n-dimensional connected Riemannian manifold without boundary,

∇ : the Levi-Civita connection with respect to g,

X(M) : the set of smooth vector fields on M,

C∞(M) : the set of smooth functions on M.

A gradient vector field and a Hessian of f ∈ C∞(M) are defined by

g(∇f,X) = df(X) and Hess f(X,Y ) = g(∇X∇f, Y ), X, Y ∈ X(M),

respectively. A curvature tensor, a Ricci curvature, and a scalar curvature are
defined by

R(X,Y )Z := ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

Ricg(X,Y ) :=
n∑

i=1

g(R(ei, X)Y, ei), and R :=
n∑

i=1

Ricg(ei, ei),

respectively. Here X,Y, Z ∈ X(M) and {ei}ni=1 is an orthonormal frame of M .



Ricci Solitons

Definition (Hamilton 1982) A Ricci soliton is a Riemannian manifold (M, g)
admitting a vector field V ∈ X(M) and a real constant λ ∈ R such that

Ricg +
1

2
LV g = λg,

where LV is the Lie derivative in the direction of V . The soliton (M, g) is

shrinking if λ > 0, steady if λ = 0, expanding if λ < 0.

Remark A typical example of Ricci solitons is an Einstein manifold, where V is
given by a Killing vector field. In this case, we say that the soliton is trivial.

If V = ∇f for some smooth function f : M → R, then the soliton (M, g) is
called a gradient Ricci soliton. In such a case, the soliton satisfies

Ricg +Hess f = λg.

We refer to f as a potential function of the gradient Ricci soliton.



A gradient Ricci soliton Ricg +Hess f = λg

A typical example of gradient Ricci solitons is the Gaussian soliton (Rn, g0).

• g0 is the canonical flat metric on Rn.

• a potential function f : Rn → R is given by f(x) = λ
2 |x|

2 (λ > 0 or λ < 0).

Remark The Gaussian soliton is non-compact.

A Ricci soliton Ricg +
1

2
LV g = λg

Given a Ricci soliton (M, g), we may define a time-dependent vector field by
Wt := − 1

2λtV . We denote by φt the flow generated by Wt. The metric

g(t) = −2λtφ∗
t g

is a solution to the Ricci flow

∂g

∂t
(t) = −2Ricg(t) .



Background and Motivation

A Ricci soliton Ricg +
1

2
LV g = λg

• Introduced by Hamilton (1982)

• A natural generalization of an Einstein manifold

• The Ricci flow has achieved great success in finding canonical metrics

• Ricci solitons play important roles in the Ricci flow

– Correspond to self-similar solutions to the flow

– Arise as singularity models of the flow

• Intimately related to Li-Yau-Hamilton type estimates

– Steady Ricci solitons achieve the equality in the estimates

• Ricci solitons play important roles in Superstring Theory



Properties of Ricci Solitons

A Ricci soliton Ricg +
1

2
LV g = λg is

shrinking if λ > 0, steady if λ = 0, expanding if λ < 0.

Theorem (Perelman 2002) Any compact Ricci soliton must be gradient.

Theorem (Hamilton 1993) Any compact steady or expanding gradient
Ricci soliton must be trivial.

Theorem (Hamilton 1986 for n = 2, Ivey 1992 for n = 3) In dimen-
sion n ⩽ 3, any compact shrinking Ricci soliton must be trivial.



Some Examples of Ricci Solitons

Compact Case

• Koiso 1990, Cao 1994 : shrinking gradient Kähler Ricci solitons

– P1(C)-bundles over Kähler-Einstein manifolds, e.g. CP2#CP2

• Wang and Zhu 2003 : shrinking gradient Kähler Ricci solitons

– Toric Fano Kähler manifolds, e.g. CP2#2CP2

Complete Non-Compact Case

• Hamilton 1986 : steady gradient Ricci solitons

– Cigar solitons
(
R2, dx2+dy2

1+x2+y2

)
with f = − log(1 + x2 + y2)

• Futaki and Wang 2009 : expanding gradient Kähler Ricci solitons

– Cone manifolds over compact Sasaki manifolds



　
Curvature and Topology

One of the most natural and important topics in Riemannian geometry is the
relation between curvature and topology of underlying manifolds.

Theorem (Lohkamp 1992) Any n-dimensional manifold M , n ⩾ 3, admits
a complete Riemannian metric g whose Riemannian curvature satisfies

−a(n) ⩽ Rm ⩽ −b(n),

where a(n) > b(n) > 0 are positive constants depending only on n.

Corollary (Lohkamp 1992) Any n-dimensional manifold M , n ⩾ 3, admits
a complete Riemannian metric g whose Ricci curvature is everywhere negative.

Remark Corollary above says that there are no obstructions to the existence of
complete Riemannian metrics with negative Ricci curvature.



　 Myers’s Theorem

Natural questions to ask about a complete Riemannian manifold (M, g) are

• When is M compact?

• How large is the diameter of M?

Theorem (Myers 1941) Let (M, g) be an n-dimensional complete
Riemannian manifold. If there exists a positive constant λ > 0 such that

Ricg(X,X) ⩾ λg(X,X), X ∈ X(M),

then M is compact with finite fundamental group. Moreover,

diam(M, g) ⩽ π

√
n− 1

λ
.



　 Ambrose’s Theorem

Theorem (Ambrose 1956) Let (M, g) be a complete Riemannian
manifold. Suppose that there exists a point p ∈ M for which every geodesic
γ : [0,+∞) → M emanating from p satisfies∫ +∞

0

Ricg(γ̇(t), γ̇(t))dt = +∞.

Then (M, g) is compact.

Remark Ambrose’s theorem above does not require the Ricci curvature to be
everywhere non-negative. Moreover, since

Ricg ⩾ λg (λ > 0) =⇒
∫ +∞

0

Ricg(γ̇(t), γ̇(t))dt = +∞,

the compactness result in Myers’s theorem follows from Ambrose’s theorem.



　
Cheeger-Gromov-Taylor’s Theorem

Theorem (Cheeger, Gromov, and Taylor 1981) Let (M, g) be an n-
dimensional complete Riemannian manifold. Suppose that there exist a point
p ∈ M and positive constants r0 > 0 and v > 0 such that

Ricg(x) ⩾ (n− 1)

(
1
4 + v2

)
d2(x, p)

for all x ∈ M satisfying d(x, p) ⩾ r0, where d(x, p) is the distance between
x and p. Then (M, g) is compact. Moreover, the diameter from p satisfies

diamp(M, g) ⩽ r0 exp
(π
v

)
.

Remark Theorem above is not true if v = 0. In fact, the Euclidean space Rn

equipping with the metric dr2 + rg(θ) outside some compact set is not compact
and the Ricci curvature satisfies the condition as in Theorem with v = 0, where
g(θ) is the standard metric on the sphere Sn−1.



　 Modified and Bakry-Émery Ricci Curvatures

Let (M, g) be an n-dimensional complete Riemannian manifold, V ∈ X(M)
and f ∈ C∞(M). We put

RicV := Ricg +
1

2
LV g, Ricf := Ricg +Hess f

and call them a modified Ricci curvature and a Bakry-Émery Ricci curvature,
respectively. We also put

∆V := ∆g − V · ∇, ∆f := ∆g −∇f · ∇

and call them a V -Laplacian and a Witten-Laplacian, respectively.

• Good substitutes of the Ricci curvature and the Laplacian to establish

Eigenvalue estimates, Li-Yau Harnack inequalities, Liouville theorems, · · ·

Question Are classical results for Einstein manifolds true for the solitons ?

Remark The shrinking Gaussian soliton (Rn, g0) is non-compact.



　
A Compactness Theorem for Ricci Solitons

Theorem (Fernández-López and Garćıa-Ŕıo 2004) Let (M, g) be a
complete Riemannian manifold satisfying

RicV := Ricg +
1

2
LV g ⩾ λg

for a positive constant λ > 0. Then

M is compact ⇐⇒ |V | is bounded on M .

Moreover, if M is compact, then the fundamental group satisfies

|π1(M)| < +∞.

Theorem (Wylie 2007) The finiteness of π1(M) remains valid under the
completeness of (M, g) and a positive lower bound on RicV .



　
A Diameter Bound via RicV

Theorem (Limoncu 2009) Let (M, g) be an n-dimensional complete
Riemannian manifold satisfying

RicV := Ricg +
1

2
LV g ⩾ λg

for a positive constant λ > 0. If |V | ⩽ k for a non-negative constant
k ⩾ 0, then M is compact. Moreover,

diam(M, g) ⩽ π

λ

(
k√
2
+

√
k2

2
+ (n− 1)λ

)
.

Remark Recently, under the same assumption as in Theorem above, the upper
diameter bound above was improved to

diam(M, g) ⩽ 1

λ

(
2k +

√
4k2 + (n− 1)λπ2

)
.

By taking k = 0, Theorem above is reduced to the Myers’s theorem.



　
A Diameter Bound via Ricf

Theorem (Wei and Wylie 2007) Let (M, g) be an n-dimensional
complete Riemannian manifold satisfying

Ricf := Ricg +Hess f ⩾ λg

for a positive constant λ > 0. If |f | ⩽ k for a non-negative constant
k ⩾ 0, then M is compact. Moreover,

diam(M, g) ⩽ π

√
n− 1

λ
+

4k√
(n− 1)λ

.

Remark Recently, under the same assumption as in Theorem above, the upper
diameter bound above was improved to

diam(M, g) ⩽ π√
λ

√
n− 1 +

8k

π
.

By taking k = 0, Theorem above is reduced to the Myers’s theorem.



　

Ambrose Theorem

Myers Theorem Ambrose Theorem=⇒

Myers Theorem =⇒

Einstein

Ricci Soliton

=⇒ =⇒

Theorem ( — 2015) Let (M, g) be a complete Riemannian manifold.
Suppose that there exists a point p ∈ M for which every geodesic γ :
[0,+∞) → M emanating from p satisfies∫ +∞

0

RicV (γ̇(t), γ̇(t))dt = +∞

and |V | ⩽ k for a non-negative constant k ⩾ 0. Then (M, g) is compact.

Remark An Ambrose type theorem above was already proved by Zhang (2013)
in the case where V = ∇f .



Ambrose Theorem

Myers Theorem Ambrose Theorem=⇒

Myers Theorem =⇒

Einstein

Ricci Soliton

=⇒ =⇒

Theorem ( — 2016) Let (M, g) be a complete Riemannian manifold.
Suppose that there exists a point p ∈ M for which every geodesic γ :
[0,+∞) → M emanating from p satisfies∫ +∞

0

Ricf (γ̇(t), γ̇(t))dt = +∞

and |f | ⩽ k for a non-negative constant k ⩾ 0. Then (M, g) is compact.



　
Some Cheeger-Gromov-Taylor Type Compactness

Theorems via Modified Ricci Curvature

Theorem (Soylu 2016) Let (M, g) be an n-dimensional complete
Riemannian manifold. Suppose that there exist a point p ∈ M and positive
constants r0 > 0 and v > 0 such that

Ricf (x) ⩾ (n− 1)

(
1
4 + v2

)
d2(x, p)

for all x ∈ M satisfying d(x, p) ⩾ r0, where d(x, p) is the distance between
x and p. If |f | ⩽ (n − 1)k for a non-negative constant k ⩾ 0, then (M, g)
is compact. Moreover, the diameter from p satisfies

diamp(M, g) ⩽ r0 exp

(
1

v2

√
8k2 + π2v2 + 4k

√
4k2 + π2v2 (1 + 4v2)

)
.

Remark By taking k = 0, Theorem above is reduced to the Cheeger-Gromov-
Taylor’s compactness theorem.



　
Recall Wei and Wylie (2007) proved that a complete Riemannian manifold (M, g)
with a positive lower bound on the Bakry-Émery Ricci curvature Ricf ⩾ λg
(λ > 0) is compact if |f | ⩽ k for some non-negative constant k ⩾ 0.

Theorem (Limoncu 2011) Let (M, g) be an n-dimensional complete
Riemannian manifold satisfying

Ricf ⩾ λg

for a positive constant λ > 0. Suppose that there exist a point p ∈ M
and a non-negative constant k ⩾ 0 such that

|∇f |(x) ⩽
k

d(x, p)

for all x ∈ M \ {p}, where d(x, p) is the distance between x and p. Then
(M, g) is compact. Moreover, the diameter from p satisfies

diamp(M, g) ⩽ π√
λ

√
n− 1 + 4k.



　Theorem ( — 2016) Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose that there exist a point p ∈ M and positive constants
r0 > 0 and v > 0 such that

RicV (x) ⩾ (n− 1)

(
1
4 + v2

)
d2(x, p)

for all x ∈ M satisfying d(x, p) ⩾ r0, where d(x, p) is the distance between
x and p. If there exists a non-negative constant k ⩾ 0 such that

|V |(x) ⩽
(n − 1)k

d(x, p)
and k < v2

for all x ∈ M \ {p}. Then (M, g) is compact. Moreover, the diameter from
p satisfies

diamp(M, g) ⩽ r0 exp

(
2k +

√
4k2 + (v2 − k)π2

v2 − k

)
.

Remark By taking k = 0, Theorem above is reduced to the Cheeger-Gromov-
Taylor’s compactness theorem.



m-Modified and m-Bakry-Émery Ricci Curvatures

Let (M, g) be an n-dimensional complete Riemannian manifold, V ∈ X(M)
and f ∈ C∞(M). For m ∈ [n,+∞), we put

RicmV :=

Ricg m = n,

Ricg +
1

2
LV g −

1

m− n
V ∗ ⊗ V ∗ m > n,

Ricmf :=

Ricg m = n,

Ricg +Hess f − 1

m− n
df ⊗ df m > n

and call them an m-modified Ricci curvature and an m-Bakry-Émery Ricci
curvature, respectively. Here V ∗ is the metric dual of V with respect to g.

• Good substitutes of the Ricci curvature

• Important tools in Optimal Transport Theory by Lott, Sturm and Villani

• Play important roles in Perelman’s entropy formulas for the Ricci flow



　Theorem (Limoncu 2009) Let (M, g) be an n-dimensional complete
Riemannian manifold. Suppose that there exists a positive constant λ > 0
such that

RicmV ⩾ λg,

where m ∈ [n,+∞). Then (M, g) is compact. Moreover,

diam(M, g) ⩽ π√
λ

√
m− 1.

Remark The Myers type theorem above was already proved by Qian (1995) in
the case where V = ∇f .

Ricg Myers type Ambrose type C-G-T type

RicV FL-GR, Limoncu, — Zhang, — —

Ricf Wei-Wylie, Limoncu, — — Soylu

RicmV Limoncu ??? ???

Ricmf Qian ??? ???



　Theorem ( — 2015) Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose that there exists a point p ∈ M for which every geodesic
γ : [0,+∞) → M emanating from p satisfies∫ +∞

0

RicmV (γ̇(t), γ̇(t))dt = +∞,

where m ∈ [n,+∞). Then (M, g) is compact.

Remark The Ambrose type theorem above was already proved by Cavalcante,
Oliveira and Santos (2015) in the case where V = ∇f . The key ingredient
in proving an Ambrose type theorem above is the Riccati inequality for the m-
modified Ricci curvature

RicmV (γ̇, γ̇) ⩽ −ṁV − (mV )
2

m− 1
, mV := ∆V d ,

which may be derived by applying the Bochner-Weitzenböck formula

1

2
∆V |∇u|2 = |Hessu|2 +RicV (∇u,∇u) + g(∇∆V u,∇u), u ∈ C∞(M)

to the distance function u(x) = d(x, p). This formula was proved by Li (2014).



　A Cheeger-Gromov-Taylor Type Compactness
Theorem via m-Modified Ricci Curvature

Theorem ( — 2016) Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose that there exist a point p ∈ M and positive constants
r0 > 0 and v > 0 such that

RicmV (x) ⩾ (m− 1)

(
1
4 + v2

)
d2(x, p)

for all x ∈ M satisfying d(x, p) ⩾ r0, where m ∈ [n,+∞) and d(x, p) is the
distance between x and p. Then (M, g) is compact. Moreover, the diameter
from p satisfies

diamp(M, g) ⩽ r0 exp
(π
v

)
.

Remark A similar Cheeger-Gromov-Taylor type compactness theorem via m-
Bakry-Émery Ricci curvature was established by Wang (2013).



Some Myers Type Theorems via (m-) Bakry-Émery
and (m-) Modified Ricci Curvatures

Ricg Myers Ambrose Cheeger-Gromov-Taylor

RicV FL-GR, Limoncu, —– Zhang, —– —–

Ricf Wei-Wylie, Limoncu, —– —– Soylu

RicmV Limoncu —– Wang, —–

Ricmf Qian C-O-S —–
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