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MOTIVATION

Develop a consistent electrodynamics in an alternative theory of
gravity: “Scalar ether theory” or SET.

Motivations for SET:

Special relativity (SR) can be interpreted within classical
concepts of space and time, thus keeping a “preferred”
simultaneity: Lorentz-Poincaré interpretation/version of SR.
SET extends this to gravitation. (Has curved spacetime too.)

SET has a physical interpretation for gravity: a pressure force.

Some problems of general relativity (GR) are avoided in SET:
singularities (in gravitational collapse & cosmology), dark
energy, interpretation of the gauge condition, a problem with
Dirac equation.
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PREVIOUS WORK

In GR, the eqs. of electrodynamics rewrite those of SR by using
the “comma goes to semicolon” rule:
partial derivative → covariant derivative.

Not possible in SET, essentially because the Dynamical Equation
isn’t generally Tλν

;ν = 0 (which rewrites Tλν
,ν = 0 valid in SR).

In SET, first Maxwell group unchanged. Second group was got by
applying the Dynamical Eqn of SET to a charged medium in the
presence of Lorentz force, assuming (as is the case in GR) that

(i) Total energy-momentum tensor T = Tcharged medium +T field.

(ii) Total energy-momentum tensor T obeys the Dynamical Eqn,
without any non-gravitational force.
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PREVIOUS WORK (MORE ABOUT IT)

Assumptions (i) and (ii) lead to a form of Maxwell’s second group
in SET.

This form predicts charge production/destruction at unrealistic
rates ⇒ discarded. (∃ also more theoretical reasons.)

Assumption (i) is contingent and may be abandoned. Means
introducing “interaction” energy tensor T inter such that

T (total) = Tcharged medium + T field +T inter . (1)

⇒ Present work: constrain the form of T inter and derive eqs to
calculate it in a realistic gravitational + EM field.
Needs attention to independent eqs & their number in
electrodynamics. Let’s begin with standard theory: SR and GR.
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MAXWELL EQUATIONS IN STANDARD THEORY

Maxwell’s first group for the EM antisymmetric field tensor Fλν :

Fλν , ρ + Fνρ , λ + Fρλ , ν ≡ Fλν ; ρ + Fνρ ;λ + Fρλ ; ν = 0 (2)

can be rewritten as

Mλνρ := Fλν ; ρ + Fνρ ;λ + Fρλ ; ν = 0, (3)

of which four eqs. are linearly independent, e.g.

M012 = 0, M013 = 0, M023 = 0, M123 = 0. (4)

Maxwell’s second group in SR and in GR: also 4 eqs:

Fλν;ν = −µ0Jλ (λ = 0, ..., 3). (5)



Outline Motivation Standard theory Interaction tensor in SET Determining the interaction energy Conclusion

INDEPENDT EQS IN STANDARD THEORY (GIVEN SOURCE)

Assuming source Jλ is given, we thus have 4 + 4 = 8 equations
for 6 unknowns Fλν (0 ≤ λ < ν ≤ 3) (or E and B).

As is well known, those 8 eqs are nevertheless needed,
e.g. divB = 0 can’t be removed.

Can be explained by noting two differential identities of the system:

I) eλνρσMλνρ;σ ≡ 0

for the first Maxwell group (3). For the 2nd group (5), we get first
from Fλν;ν;λ ≡ 0 charge conservation as a compatibility condition:

Jλ;λ = 0. (6)

If (6) is satisfied, then using again Fλν;ν;λ ≡ 0 we get a differential
identity for the 2nd group (5):

II)
(
Fλν;ν + µ0J

λ
)
;λ
≡ 0.
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INDEPENDT EQS IN STANDARD THEORY (GENERAL CASE)

If the 4-current J is not given, we have at least 5 unknowns more:
charge density of the charged continuum ρel, its 3-velocity field v
(J ⇔ ρel and v ), plus other state parameters of the continuum:
say only its proper rest-mass density ρ∗.

Additional eqn: dynamical eqn for charged continuum (only 4 eqs):

Tµν
chg ;ν = Fµλ J

λ. (7)

(This implies the mass conservation at least for an isentropic fluid.)

However, now (II) is not a differential identity of the system any
more: it applies only on the solution space. So 4 + 4 + 4− 1 = 11
independt eqs for 6 + 5 = 11 unknowns.
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INTERACTION ENERGY TENSOR IN SET

Recall: previous work showed that in SET we must consider

T = Tchg + T field +T inter 6= Tchg + T field (8)

in the dynamical equation. (Here chg = charged medium.)
The latter coincides with Tµν

;ν = 0 in a constant gravitational field,
in particular in the “situation of SR” (SET with metric =
Minkowski’s). Now in SR (as well as in GR) we have:

Tµν
chg ;ν + Tµν

field ;ν = 0. (9)

Therefore, in the situation of SR, we should have in SET:

Tµν
inter ;ν = 0. (10)
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DYNAMICAL EQUATIONS IN SET

Dynamical equation for the total energy tensor in SET:

Tµν
;ν = bµ(T), (11)

where

b0(T) :=
γ00

2
gij ,0 T

ij , bi (T) :=
1

2
g ijgjk,0 T

0k , (12)

with γ the spacetime metric, and where g is the spatial metric in
the preferred reference frame E assumed by SET.
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DYNAMICAL EQUATIONS IN SET (CONTINUED)

For a continuous medium in the presence of a field of external
non-gravitational 3-force f = (f i ) (i = 1, 2, 3):

Tµν
medium ;ν = bµ(Tmedium) + f µ, f 0 :=

f.v

cβ
, (13)

where β :=
√
γ00 and v is the 3-velocity field defined with the local

time.

For a charged medium (Tmedium = Tchg) subjected to EM field,
we get f µ = Fµν Jν , so (13) is

Tµν
chg ;ν = bµ(Tchg) + Fµν J

ν . (14)
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INDEPENDENT EQS AND UNKNOWNS FOR SET

Independent eqs: same structure as in GR:

Maxwell’s first group (3): 4

Dynamical eqn for the total energy tensor (11): 4

Dynamical eqn for the charged medium (14): 4

minus one differential identity eλνρσMλνρ;σ ≡ 0: -1

So 11 independent equations.

Independent unknowns also close to GR:

EM field Fµν (0 ≤ µ < ν ≤ 3): 6

4-current J: 4

proper rest-mass density ρ∗: 1

plus at least one new field to define T inter ≥ 1

So ≥ 12 independent unknowns. ≥ 1 equation more is needed.
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DYNAMICAL EQN WITH ENERGY INTERACTION TENSOR: I

We use the general decomposition of the total energy tensor T (8).
Then the dynamical equation (11) for T in SET is equivalent to:

Tµν
field ;ν = bµ(T field) + bµ(Tchg)− Tµν

chg ;ν + bµ(T inter)− Tµν
inter ;ν .

(15)
Maxwell’s 1st group implies an identity for the energy tensor of the
EM field:

µ0T
µν
field ;ν ≡ Fµλ F

λν
;ν . (16)

By using this and the dynamical equation (14) for the charged
medium, (15) rewrites as

Fµλ F
λν
;ν = µ0 [bµ(T field)− Fµν J

ν − δµ], (17)

where
δµ := T ν

inter µ ;ν − bµ(T inter). (18)
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DYNAMICAL EQN WITH ENERGY INTERACTION TENSOR: II

If the matrix (Fµλ) is invertible (⇔ E.B 6= 0), (17) becomes

Fµν;ν = µ0 [Gµ
ν (bν(T field)− δν)− Jµ], (19)

with (Gµ
ν) := (Fµν)−1.

Using Fλν;ν;λ ≡ 0 gives

Jµ;µ = [Gµ
ν (bν(T field)− δν)];µ. (20)
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LORENTZ-INVARIANT INTERACTION ENERGY

In SR the interaction energy tensor T inter = 0. In SET we may
impose that, without gravitational field, T inter should be
Lorentz-invariant. This is true iff we have when the metric γ is
Minkowski’s (γµν = ηµν in Cartesian coordinates):

Tinter µν = p ηµν (situation of SR), (21)

with some scalar field p. This is equivalent to:

Tµ
inter ν := ηµρ p ηρν = p δµν (situation of SR). (22)

The definition

Tµ
inter ν := p δµν , or (Tinter)µν := p γµν , (23)

thus got in Cartesian coordinates in a Minkowski spacetime, is
actually generally-covariant. Therefore, we adopt (23) for the
general case.
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CHARGE CONSERVATION IN SET

♦ With the “scalar” interaction energy tensor (23) we have just
one unknown more: the field p.

We may add the charge conservation as the new scalar eqn.

In view of (20), this determines the field p in a given gravitational
+ EM field.

♦ In contrast, when in previous works we assumed the usual
additivity of energy tensors, i.e., T inter = 0, then the system of eqs
of electrodynamics of SET was closed.

Thus in the latter case, charge conservation could’nt be imposed.
In fact we then got significant charge production/destruction...
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WEAK GRAVITATIONAL FIELD

An asymptotic framework was developed for an EM field in a weak
and slowly varying grav. field (e.g. talk/paper at 2017 GIQ Conf.).
Essentially: conceptually associate with given system S a family
(Sλ) of systems, depending on λ→ 0, λ = 1/c2 in specific
λ-dependent units. Of course the EM field is not assumed weak
nor slowly varying. Write Taylor expansions w.r.t. λ: e.g.

F = cn
(

0
F + c−2

1
F + O(c−4)

)
(24)

where n could be any integer. And

p = c2n−5
(
0
p + c−2 1

p + O(c−4)
)
, (25)

for the “interaction scalar” field p with T inter = p γ, Eq. (23).
(The order 2n − 5 follows from charge conservation with (20).)
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INTERACTION SCALAR IN A WEAK GRAVITATIONAL FIELD

Writing charge conservation with (20), and using such asymptotic

expansions, we get for the first-approximation field p1 := c2n−5 0
p:

∂T p1 + uj∂j p1 = S , (26)

where

S :=
c−2

(
e i∂TU

)
,i

k0
(27)

and

uj :=
c k j

k0
. (28)

Here U is the Newtonian grav. potential, while the e i ’s and kµ ’s
depend only on the first-approximation EM field (E,B), that obeys
the standard flat-spacetime Maxwell equations.
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ADVECTION EQUATION FOR THE INTERACTION SCALAR

Equation (26) is an advection equation with a given source S for
the unknown field p1. This is a hyperbolic PDE whose
characteristic curves are the integral curves of the vector field
u := (uj).

That is, on the curve C(T0, x0) defined by

d x

dT
= u(T , x), x(T0) = x0, (29)

we have from (26):

d p1
dT

=
∂p1
∂T

+
∂p1
∂x j

d x j

dT
= S(T , x). (30)
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SOLUTION OF THE ADVECTION EQUATION

We note that the field u is given, i.e. it does not depend on the
unknown field p1: Eq. (28).

Therefore, the integral lines (29) are given, too, hence the
characteristic curves do not cross. Thus, the solution p1 is got
uniquely by integrating (30):

p1(T , x(T ))− p1(T0, x0) =

∫ T

T0

S(t, x(t)) d t, (31)

where T 7→ x(T ) is the solution of (29).

If at time T0 the position x0 in the frame E is enough distant from
material bodies, one may assume that p1(T0, x0) = 0.
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CONCLUSION

— Differential identities show that in standard electrodynamics:
number of independent scalar PDE’s = number of unknowns.
True with given 4-current J and also with J ∈ {unknowns}.

— Same is true in the investigated theory of gravity (“SET”) with
additivity assumption (T inter = 0). That however leads to charge
non-conservation. Thus one must have in general T inter 6= 0.

— For T inter to be Lorentz-invariant in SR, it must involve just a
scalar field p. Then need one more equation: charge conservation.

— In a weak and slowly varying gravitational field and with a given
EM field, the scalar field p is determined by an advection equation
with given source, Eq. (26). Hence p may be calculated by
integration along characteristics, Eq. (31). The corresponding
interaction energy could be counted as “dark matter”, since it is
not especially localized inside matter.
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