Quantum Localisation on the Circle

XXth International Conference on Geometry, Integrability and Quantization

Rodrigo Fresneda (UFABC - São Paulo, Brasil)

Varna, 6th of June of 2018

J. Math. Phys., 59(5), 52105 (2018), in collaboration with J.P. Gazeau (Univ. Paris-Diderot) and D. Noguera (CBPF, Rio de Janeiro)

• If $\psi(\alpha)$ is the 2π -periodic wave function on the circle, the quantum angle $\widehat{\alpha}$ cannot be a multiplication operator, $\widehat{\alpha}\psi(\alpha)=\alpha\psi(\alpha)$ without breaking periodicity.

- If $\psi(\alpha)$ is the 2π -periodic wave function on the circle, the quantum angle $\widehat{\alpha}$ cannot be a multiplication operator, $\widehat{\alpha}\psi(\alpha)=\alpha\psi(\alpha)$ without breaking periodicity.
- Except if $\widehat{\alpha}$ stands for the 2π -periodic discontinuous angle function,

$$(\widehat{\alpha}\psi)(\alpha) := \left(\alpha - 2\pi \left\lfloor \frac{\alpha}{2\pi} \right\rfloor\right) \psi(\alpha). \tag{1}$$

- If $\psi(\alpha)$ is the 2π -periodic wave function on the circle, the quantum angle $\widehat{\alpha}$ cannot be a multiplication operator, $\widehat{\alpha}\psi(\alpha)=\alpha\psi(\alpha)$ without breaking periodicity.
- Except if $\widehat{\alpha}$ stands for the 2π -periodic discontinuous angle function,

$$(\widehat{\alpha}\psi)(\alpha) := \left(\alpha - 2\pi \left\lfloor \frac{\alpha}{2\pi} \right\rfloor\right) \psi(\alpha). \tag{1}$$

• However, for $\widehat{\alpha}$ Self-Adjoint (SA), $spec(\widehat{\alpha}) \subset [0, 2\pi]$, the CCR $[\widehat{\alpha}, \widehat{p}_{\alpha}] = i\hbar I$ does not hold for SA quantum angular momentum $\widehat{p}_{\alpha} = -i\hbar \frac{\partial}{\partial \alpha}$.

- If $\psi(\alpha)$ is the 2π -periodic wave function on the circle, the quantum angle $\widehat{\alpha}$ cannot be a multiplication operator, $\widehat{\alpha}\psi(\alpha)=\alpha\psi(\alpha)$ without breaking periodicity.
- Except if $\widehat{\alpha}$ stands for the 2π -periodic discontinuous angle function,

$$(\widehat{\alpha}\psi)(\alpha) := \left(\alpha - 2\pi \left\lfloor \frac{\alpha}{2\pi} \right\rfloor\right) \psi(\alpha). \tag{1}$$

- However, for $\widehat{\alpha}$ Self-Adjoint (SA), $spec(\widehat{\alpha}) \subset [0, 2\pi]$, the CCR $[\widehat{\alpha}, \widehat{p}_{\alpha}] = i\hbar I$ does not hold for SA quantum angular momentum $\widehat{p}_{\alpha} = -i\hbar \frac{\partial}{\partial \alpha}$.
- Instead, one has

$$[\widehat{\alpha},\widehat{p}_{\alpha}] = i\hbar I \left[1 - 2\pi \sum_{n} \delta(\alpha - 2n\pi) \right]. \tag{2}$$

• This is an old problem (dating back to Dirac "The Quantum Theory of the Emission and Absorption of Radiation").

- This is an old problem (dating back to Dirac "The Quantum Theory of the Emission and Absorption of Radiation").
- Most approaches rely on replacing the angle operator by a quantum version of a smooth periodic function of the classical angle at the cost of losing localisation.

- This is an old problem (dating back to Dirac "The Quantum Theory of the Emission and Absorption of Radiation").
- Most approaches rely on replacing the angle operator by a quantum version of a smooth periodic function of the classical angle at the cost of losing localisation.
- We revisit the problem of the quantum angle through coherent state (CS) quantisation, which is a particular method belonging to covariant integral quantisation (S.T. Ali, J.-P. Antoine, and J.-P. Gazeau, Coherent States, Wavelets and their Generalizations).

- This is an old problem (dating back to Dirac "The Quantum Theory of the Emission and Absorption of Radiation").
- Most approaches rely on replacing the angle operator by a quantum version of a smooth periodic function of the classical angle at the cost of losing localisation.
- We revisit the problem of the quantum angle through coherent state (CS) quantisation, which is a particular method belonging to covariant integral quantisation (S.T. Ali, J.-P. Antoine, and J.-P. Gazeau, Coherent States, Wavelets and their Generalizations).
- Our approach is group theoretical, based on the unitary irreducible representations of the (special) Euclidean group $E(2) = \mathbb{R}^2 \rtimes SO(2)$ (see also S. De Bièvre, Coherent states over symplectic homogeneous spaces).

- This is an old problem (dating back to Dirac "The Quantum Theory of the Emission and Absorption of Radiation").
- Most approaches rely on replacing the angle operator by a quantum version of a smooth periodic function of the classical angle at the cost of losing localisation.
- We revisit the problem of the quantum angle through coherent state (CS) quantisation, which is a particular method belonging to covariant integral quantisation (S.T. Ali, J.-P. Antoine, and J.-P. Gazeau, Coherent States, Wavelets and their Generalizations).
- Our approach is group theoretical, based on the unitary irreducible representations of the (special) Euclidean group $E(2) = \mathbb{R}^2 \rtimes SO(2)$ (see also S. De Bièvre, Coherent states over symplectic homogeneous spaces).
- One of our aims is to build acceptable angle operators from the classical angle function through a consistent and manageable quantisation procedure.

• Let G be a Lie group with left Haar measure $d\mu(g)$ and $g\mapsto U(g)$ a UIR of G in $\mathcal{H}.$ For $\rho\in B(\mathcal{H})$, suppose the following operator is defined in a weak sense:

$$R := \int_{G} \rho(g) d\mu(g), \rho(g) := U(g) \rho U^{\dagger}(g)$$

• Let G be a Lie group with left Haar measure $d\mu(g)$ and $g\mapsto U(g)$ a UIR of G in \mathcal{H} . For $\rho\in B(\mathcal{H})$, suppose the following operator is defined in a weak sense:

$$R := \int_{G} \rho(g) d\mu(g), \rho(g) := U(g) \rho U^{\dagger}(g)$$

ullet Then , $R=c_
ho I$, since $U\left(g_0
ight)RU^\dagger\left(g_0
ight)=\int_G
ho\left(g_0g
ight)\mathrm{d}\mu\left(g
ight)=R$

• Let G be a Lie group with left Haar measure $d\mu(g)$ and $g\mapsto U(g)$ a UIR of G in \mathcal{H} . For $\rho\in B(\mathcal{H})$, suppose the following operator is defined in a weak sense:

$$R := \int_{G} \rho(g) d\mu(g), \rho(g) := U(g) \rho U^{\dagger}(g)$$

- ullet Then , $R=c_
 ho I$, since $U\left(g_0
 ight)RU^\dagger\left(g_0
 ight)=\int_{\mathcal{G}}
 ho\left(g_0g
 ight)\mathrm{d}\mu\left(g
 ight)=R$
- \bullet That is, the family of operators $\rho(\mathbf{g})$ provides a resolution of the identity

$$\int_{G}\rho\left(g\right)\frac{\mathrm{d}\mu\left(g\right)}{c_{\rho}}=I\,,\quad c_{\rho}=\int_{G}\mathrm{tr}(\rho_{0}\rho(g))\mathrm{d}\mu\left(g\right)$$

• Let G be a Lie group with left Haar measure $d\mu(g)$ and $g\mapsto U(g)$ a UIR of G in \mathcal{H} . For $\rho\in B(\mathcal{H})$, suppose the following operator is defined in a weak sense:

$$R := \int_{G} \rho(g) d\mu(g), \rho(g) := U(g) \rho U^{\dagger}(g)$$

- ullet Then , $R=c_
 ho I$, since $U\left(g_0
 ight)RU^\dagger\left(g_0
 ight)=\int_G
 ho\left(g_0g
 ight)\mathrm{d}\mu\left(g
 ight)=R$
- ullet That is, the family of operators ho(g) provides a resolution of the identity

$$\int_{G}\rho\left(g\right)\frac{\mathrm{d}\mu\left(g\right)}{c_{\rho}}=I\,,\quad c_{\rho}=\int_{G}\mathrm{tr}(\rho_{0}\rho(g))\mathrm{d}\mu\left(g\right)$$

 This allows an integral quantisation of complex-valued functions on the group

$$f \mapsto A_f = \int_G \rho(g) f(g) \frac{\mathrm{d}\mu(g)}{c_\rho},$$

• Let G be a Lie group with left Haar measure $d\mu(g)$ and $g\mapsto U(g)$ a UIR of G in \mathcal{H} . For $\rho\in B(\mathcal{H})$, suppose the following operator is defined in a weak sense:

$$R := \int_{G} \rho(g) d\mu(g), \rho(g) := U(g) \rho U^{\dagger}(g)$$

- ullet Then , $R=c_
 ho I$, since $U\left(g_0
 ight)RU^\dagger\left(g_0
 ight)=\int_G
 ho\left(g_0g
 ight)\mathrm{d}\mu\left(g
 ight)=R$
- \bullet That is, the family of operators $\rho(\mathbf{g})$ provides a resolution of the identity

$$\int_{G} \rho(g) \frac{\mathrm{d}\mu(g)}{c_{\rho}} = I, \quad c_{\rho} = \int_{G} \mathrm{tr}(\rho_{0}\rho(g)) \mathrm{d}\mu(g)$$

 This allows an integral quantisation of complex-valued functions on the group

$$f \mapsto A_f = \int_G \rho(g) f(g) \frac{\mathrm{d}\mu(g)}{c_o},$$

which is covariant in the sense that

$$U(g)A_fU^{\dagger}(g) = A_{U(g)f}, (U(g)f)(g') = f(g^{-1}g')$$

• We consider the quantisation of functions on a homogeneous space X, the left coset manifold $X \sim G/H$ for the action of a Lie Group G, where the closed subgroup H is the stabilizer of some point of X.

- We consider the quantisation of functions on a homogeneous space X, the left coset manifold $X \sim G/H$ for the action of a Lie Group G, where the closed subgroup H is the stabilizer of some point of X.
- The interesting case is when X is a symplectic manifold (e.g., co-adjoint orbit of G) and can be viewed as the phase space for the dynamics.

- We consider the quantisation of functions on a homogeneous space X, the left coset manifold $X \sim G/H$ for the action of a Lie Group G, where the closed subgroup H is the stabilizer of some point of X.
- The interesting case is when X is a symplectic manifold (e.g., co-adjoint orbit of G) and can be viewed as the phase space for the dynamics.
- Given a quasi-invariant measure ν on X, one has for a global Borel section $\sigma: X \to G$ a unique quasi-invariant measure $\nu_{\sigma}(x)$.

- We consider the quantisation of functions on a homogeneous space X, the left coset manifold $X \sim G/H$ for the action of a Lie Group G, where the closed subgroup H is the stabilizer of some point of X.
- The interesting case is when X is a symplectic manifold (e.g., co-adjoint orbit of G) and can be viewed as the phase space for the dynamics.
- Given a quasi-invariant measure ν on X, one has for a global Borel section $\sigma: X \to G$ a unique quasi-invariant measure $\nu_{\sigma}(x)$.
- Let U be a square-integrable UIR, and ρ_0 a density operator such that $c_{\rho} := \int_{X} \operatorname{tr} \left(\rho_{0} \, \rho_{\sigma}(x) \right) \, \mathrm{d} \nu_{\sigma}(x) < \infty$ $\rho_{\sigma}(x) := U(\sigma(x))\rho U(\sigma(x))^{\dagger}$.

• One has the resolution of the identity

$$I = \frac{1}{c_{\rho}} \int_{X} \rho_{\sigma}(x) \, \mathrm{d}\nu_{\sigma}(x) \,.$$

• One has the resolution of the identity

$$I = \frac{1}{c_{\rho}} \int_{X} \rho_{\sigma}(x) d\nu_{\sigma}(x).$$

 We then define the quantisation of functions on X as the linear map

$$f\mapsto A_f^\sigma=rac{1}{c_
ho}\int_X\,f(x)\,
ho_\sigma(x)\,\mathrm{d}
u_\sigma(x)\,.$$

One has the resolution of the identity

$$I = \frac{1}{c_\rho} \int_X \rho_\sigma(x) \,\mathrm{d}\nu_\sigma(x) \,.$$

 We then define the quantisation of functions on X as the linear map

$$f\mapsto A_f^\sigma=rac{1}{c_
ho}\int_X\ f(x)\,
ho_\sigma(x)\,\mathrm{d}
u_\sigma(x)\,.$$

- Covariance holds in the sense $U(g)A_f^{\sigma}U(g)^{\dagger}=A_{\mathcal{U}_l(g)f}^{\sigma_g}$, where $\sigma_g(x)=g\sigma(g^{-1}x)$ with $\mathcal{U}_l(g)f(x)=f\left(g^{-1}x\right)$.
- For $\rho = |\eta\rangle\langle\eta|$, we are working with CS quantisation, where the CS's are defined as $|\eta_x\rangle := |U(\sigma_g(x))\eta\rangle$.

• Let V, dimV = n, $S \leq GL(V)$ and $G = V \rtimes S$

- Let V, dimV = n, $S \leq GL(V)$ and $G = V \rtimes S$
- ullet Given $k_0 \in V^*$, one can show that

$$H_0 = \{g \in G | (k_0, 0) = Ad_g^{\#}(k_0, 0)\} = N_0 \rtimes S_0$$

for
$$(k_0,0) \in \mathfrak{g}^*$$

- Let V, dimV = n, $S \leq GL(V)$ and $G = V \rtimes S$
- ullet Given $k_0 \in V^*$, one can show that

$$H_0 = \{g \in G | (k_0, 0) = Ad_g^{\#}(k_0, 0)\} = N_0 \rtimes S_0$$

for
$$(k_0,0) \in \mathfrak{g}^*$$

• Furthermore, $X = G/H_0 \simeq V_0 \times \mathcal{O}^* \simeq T^*\mathcal{O}^*$, $V_0 = T_{k_0}^*\mathcal{O}^*$, is a symplectic manifold with symplectic measure $d\mu(\mathbf{p}, \mathbf{q})$ which allows the construction of a section $V_0 \times \mathcal{O}^* \ni (\mathbf{p}, \mathbf{q}) \mapsto \sigma(\mathbf{p}, \mathbf{q}) \in G$

- Let V, dimV = n, $S \leq GL(V)$ and $G = V \rtimes S$
- ullet Given $k_0 \in V^*$, one can show that

$$H_0 = \{g \in G | (k_0, 0) = Ad_g^{\#}(k_0, 0)\} = N_0 \times S_0$$

for $(k_0,0) \in \mathfrak{g}^*$

- Furthermore, $X = G/H_0 \simeq V_0 \times \mathcal{O}^* \simeq T^*\mathcal{O}^*$, $V_0 = T_{k_0}^*\mathcal{O}^*$, is a symplectic manifold with symplectic measure $d\mu(\mathbf{p}, \mathbf{q})$ which allows the construction of a section $V_0 \times \mathcal{O}^* \ni (\mathbf{p}, \mathbf{q}) \mapsto \sigma(\mathbf{p}, \mathbf{q}) \in G$
- Finally, given a UIR χ of V and a UIR L of S, one can construct an irreducible representation $(v,s) \mapsto {}^{\chi L}U(v,s)$ of G induced by the representation $\chi \otimes L$ of $V \rtimes S_0$.

- Let V, dimV = n, $S \leq GL(V)$ and $G = V \rtimes S$
- ullet Given $k_0 \in V^*$, one can show that

$$H_0 = \{g \in G | (k_0, 0) = Ad_g^{\#}(k_0, 0)\} = N_0 \rtimes S_0$$

for $(k_0,0) \in \mathfrak{g}^*$

- Furthermore, $X = G/H_0 \simeq V_0 \times \mathcal{O}^* \simeq T^*\mathcal{O}^*$, $V_0 = T_{k_0}^*\mathcal{O}^*$, is a symplectic manifold with symplectic measure $\mathrm{d}\mu(\mathbf{p},\mathbf{q})$ which allows the construction of a section $V_0 \times \mathcal{O}^* \ni (\mathbf{p},\mathbf{q}) \mapsto \sigma(\mathbf{p},\mathbf{q}) \in G$
- Finally, given a UIR χ of V and a UIR L of S, one can construct an irreducible representation $(v,s) \mapsto {}^{\chi L}U(v,s)$ of G induced by the representation $\chi \otimes L$ of $V \rtimes S_0$.
- Given $\eta \in \mathcal{H} = L^2(\mathcal{O}^*, d\nu)$, one constructs a family $\eta_{\mathbf{p}, \mathbf{q}}$: $\eta_{\mathbf{p}, \mathbf{q}}(k) = (\chi^L U(\sigma(\mathbf{p}, \mathbf{q}))\eta)(k)$

If one can prove

$$\begin{array}{l} \int_{V_0 \times \mathcal{O}^*} \mathrm{d} \dot{\mu(\boldsymbol{p}, \boldsymbol{q})} \langle \, \phi \, | \, \eta_{\boldsymbol{p}, \boldsymbol{q}} \, \rangle_{\mathcal{H}} \langle \, \eta_{\boldsymbol{p}, \boldsymbol{q}} \, | \, \psi \, \rangle_{\mathcal{H}} = c_{\eta} \langle \, \phi \, | \, \psi \, \rangle \ \text{where} \\ \phi, \psi : \mathcal{O}^* \to \mathbb{C} \ \text{and} \ 0 < c_{\eta} < \infty \end{array}$$

- If one can prove $\int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\boldsymbol{p}, \boldsymbol{q}) \langle \phi \, | \, \eta_{\boldsymbol{p}, \boldsymbol{q}} \rangle_{\mathcal{H}} \langle \, \eta_{\boldsymbol{p}, \boldsymbol{q}} \, | \, \psi \, \rangle_{\mathcal{H}} = c_{\eta} \langle \, \phi \, | \, \psi \, \rangle \text{ where } \\ \phi, \psi : \mathcal{O}^* \to \mathbb{C} \text{ and } 0 < c_n < \infty$
- we obtain the resolution of the identity

$$\frac{1}{c_{\eta}} \int_{V_0 \times \mathcal{O}^*} d\mu(\boldsymbol{p}, \boldsymbol{q}) |\eta_{\boldsymbol{p}, \boldsymbol{q}}\rangle \langle \eta_{\boldsymbol{p}, \boldsymbol{q}}| = I$$

- If one can prove $\int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\boldsymbol{p}, \boldsymbol{q}) \langle \phi \, | \, \eta_{\boldsymbol{p}, \boldsymbol{q}} \rangle_{\mathcal{H}} \langle \, \eta_{\boldsymbol{p}, \boldsymbol{q}} \, | \, \psi \, \rangle_{\mathcal{H}} = c_{\eta} \langle \, \phi \, | \, \psi \, \rangle \text{ where } \\ \phi, \psi : \mathcal{O}^* \to \mathbb{C} \text{ and } 0 < c_{\eta} < \infty$
- we obtain the resolution of the identity

$$\frac{1}{c_{\eta}} \int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\boldsymbol{p}, \boldsymbol{q}) |\eta_{\boldsymbol{p}, \boldsymbol{q}}\rangle \langle \eta_{\boldsymbol{p}, \boldsymbol{q}}| = I$$

• CS quantisation maps the classical function $f(\mathbf{p}, \mathbf{q}) \in V_0 \times \mathcal{O}^*$ to the operator on \mathcal{H}

$$A_f = \frac{1}{c_{\eta}} \int_{V_0 \times \mathcal{O}^*} d\mu(\boldsymbol{p}, \boldsymbol{q}) |\eta_{\boldsymbol{p}, \boldsymbol{q}}\rangle \langle \eta_{\boldsymbol{p}, \boldsymbol{q}}| f(\boldsymbol{p}, \boldsymbol{q})$$

- If one can prove $\int_{V_0 \times \mathcal{O}^*} \mathrm{d} \mu(\boldsymbol{p}, \boldsymbol{q}) \langle \phi \, | \, \eta_{\boldsymbol{p}, \boldsymbol{q}} \rangle_{\mathcal{H}} \langle \, \eta_{\boldsymbol{p}, \boldsymbol{q}} \, | \, \psi \, \rangle_{\mathcal{H}} = c_{\eta} \langle \, \phi \, | \, \psi \, \rangle \text{ where } \\ \phi, \psi : \mathcal{O}^* \to \mathbb{C} \text{ and } 0 < c_n < \infty$
- we obtain the resolution of the identity $\frac{1}{c_n} \int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\boldsymbol{p}, \boldsymbol{q}) |\eta_{\boldsymbol{p}, \boldsymbol{q}}\rangle \langle \eta_{\boldsymbol{p}, \boldsymbol{q}}| = I$
- CS quantisation maps the classical function $f(\mathbf{p}, \mathbf{q}) \in V_0 \times \mathcal{O}^*$ to the operator on \mathcal{H} $A_f = \frac{1}{c_\eta} \int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\mathbf{p}, \mathbf{q}) \left| \eta_{\mathbf{p}, \mathbf{q}} \right\rangle \left\langle \eta_{\mathbf{p}, \mathbf{q}} \right| f(\mathbf{p}, \mathbf{q})$
- The quantisation is covariant ${}^{\chi L}U(g)A_f{}^{\chi L}U(g)^\dagger = A^{\sigma_g}_{\mathcal{U}_l(g)f}, \quad A^{\sigma_g}_f := \frac{1}{c_\eta} \int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\boldsymbol{p},\boldsymbol{q}) \left| \eta^{\sigma_g}_{\boldsymbol{p},\boldsymbol{q}} \right\rangle \left\langle \eta^{\sigma_g}_{\boldsymbol{p},\boldsymbol{q}} \right| f(\boldsymbol{p},\boldsymbol{q}),$ with $|\eta^{\sigma_g}_{\boldsymbol{p},\boldsymbol{q}}\rangle = {}^{\chi L}U(g\sigma(g^{-1}(\boldsymbol{p},\boldsymbol{q})))|\eta\rangle$

- If one can prove $\int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\boldsymbol{p}, \boldsymbol{q}) \langle \phi \, | \, \eta_{\boldsymbol{p}, \boldsymbol{q}} \rangle_{\mathcal{H}} \langle \, \eta_{\boldsymbol{p}, \boldsymbol{q}} \, | \, \psi \, \rangle_{\mathcal{H}} = c_{\eta} \langle \, \phi \, | \, \psi \, \rangle \text{ where } \\ \phi, \psi : \mathcal{O}^* \to \mathbb{C} \text{ and } 0 < c_n < \infty$
- we obtain the resolution of the identity $\frac{1}{c_n} \int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\boldsymbol{p}, \boldsymbol{q}) |\eta_{\boldsymbol{p}, \boldsymbol{q}}\rangle \langle \eta_{\boldsymbol{p}, \boldsymbol{q}}| = I$
- CS quantisation maps the classical function $f(\mathbf{p}, \mathbf{q}) \in V_0 \times \mathcal{O}^*$ to the operator on \mathcal{H} $A_f = \frac{1}{c_n} \int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\mathbf{p}, \mathbf{q}) |\eta_{\mathbf{p}, \mathbf{q}}\rangle \langle \eta_{\mathbf{p}, \mathbf{q}}| f(\mathbf{p}, \mathbf{q})$
- The quantisation is covariant ${}^{\chi L}U(g)A_f{}^{\chi L}U(g)^{\dagger} = A^{\sigma_g}_{\mathcal{U}_l(g)f}$, $A^{\sigma_g}_f := \frac{1}{c_{\eta}} \int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\boldsymbol{p},\boldsymbol{q}) \left| \eta^{\sigma_g}_{\boldsymbol{p},\boldsymbol{q}} \right\rangle \left\langle \eta^{\sigma_g}_{\boldsymbol{p},\boldsymbol{q}} \right| f(\boldsymbol{p},\boldsymbol{q})$, with $|\eta^{\sigma_g}_{\boldsymbol{p},\boldsymbol{q}}\rangle = {}^{\chi L}U(g\sigma(g^{-1}(\boldsymbol{p},\boldsymbol{q})))|\eta\rangle$
- The semiclassical portrait of the operator A_f is defined as $\check{f}(\boldsymbol{p},\boldsymbol{q}) = \frac{1}{C_0} \int_{V_0 \times \mathcal{O}^*} \mathrm{d}\mu(\boldsymbol{p}',\boldsymbol{q}') f(\boldsymbol{p}',\boldsymbol{q}') \left| \left\langle \eta_{\boldsymbol{p}',\boldsymbol{q}'} | \eta_{\boldsymbol{p},\boldsymbol{q}} \right\rangle \right|^2$.

• Now G = E(2), where $V = \mathbb{R}^2$ and S = SO(2), so $E(2) = \mathbb{R}^2 \rtimes SO(2) = \{(\mathbf{r}, \theta), \mathbf{r} \in \mathbb{R}^2, \theta \in [0, 2\pi)\}$, with composition $(\mathbf{r}, \theta)(\mathbf{r}', \theta') = (\mathbf{r} + \mathcal{R}(\theta)\mathbf{r}', \theta + \theta')$.

- Now G = E(2), where $V = \mathbb{R}^2$ and S = SO(2), so $E(2) = \mathbb{R}^2 \rtimes SO(2) = \{(\boldsymbol{r}, \theta), \, \boldsymbol{r} \in \mathbb{R}^2, \, \theta \in [0, 2\pi)\}$, with composition $(\boldsymbol{r}, \theta)(\boldsymbol{r}', \theta') = (\boldsymbol{r} + \mathcal{R}(\theta)\boldsymbol{r}', \theta + \theta')$.
- $V^* = \mathbb{R}^2$, $\mathcal{O}^* = \{ \mathbf{k} = \mathcal{R}(\theta) \mathbf{k}_0 \in \mathbb{R}^2 \, | \, \mathcal{R}(\theta) \in \mathsf{SO}(2) \} \simeq \mathbb{S}^1$

- Now G = E(2), where $V = \mathbb{R}^2$ and S = SO(2), so $E(2) = \mathbb{R}^2 \rtimes SO(2) = \{(\mathbf{r}, \theta), \mathbf{r} \in \mathbb{R}^2, \theta \in [0, 2\pi)\}$, with composition $(\mathbf{r}, \theta)(\mathbf{r}', \theta') = (\mathbf{r} + \mathcal{R}(\theta)\mathbf{r}', \theta + \theta')$.
- $V^* = \mathbb{R}^2$, $\mathcal{O}^* = \{ \mathbf{k} = \mathcal{R}(\theta) \mathbf{k}_0 \in \mathbb{R}^2 \, | \, \mathcal{R}(\theta) \in \mathsf{SO}(2) \} \simeq \mathbb{S}^1$
- The stabilizer under the coadjoint action $\operatorname{Ad}_{\mathsf{E}(2)}^\#$ is $H_0 = \{(\mathbf{x},0) \in \mathsf{E}(2) | \hat{\mathbf{c}} \cdot \mathbf{x} = 0, \ \hat{\mathbf{c}} \in \mathbb{R}^2, \ \|\hat{\mathbf{c}}\| = 1, \ \operatorname{fixed} \}.$

- Now G = E(2), where $V = \mathbb{R}^2$ and S = SO(2), so $E(2) = \mathbb{R}^2 \rtimes SO(2) = \{(\mathbf{r}, \theta), \mathbf{r} \in \mathbb{R}^2, \theta \in [0, 2\pi)\}$, with composition $(\mathbf{r}, \theta)(\mathbf{r}', \theta') = (\mathbf{r} + \mathcal{R}(\theta)\mathbf{r}', \theta + \theta')$.
- $V^* = \mathbb{R}^2$, $\mathcal{O}^* = \{ \mathbf{k} = \mathcal{R}(\theta) \mathbf{k}_0 \in \mathbb{R}^2 \, | \, \mathcal{R}(\theta) \in \mathsf{SO}(2) \} \simeq \mathbb{S}^1$
- The stabilizer under the coadjoint action $\mathrm{Ad}_{\mathsf{E}(2)}^\#$ is $H_0 = \{(\mathbf{x},0) \in \mathsf{E}(2) | \hat{\mathbf{c}} \cdot \mathbf{x} = 0, \ \hat{\mathbf{c}} \in \mathbb{R}^2, \ \|\hat{\mathbf{c}}\| = 1, \ \mathrm{fixed}\}.$
- The classical phase space $X \equiv T^*\mathbb{S}^1 \simeq (\mathbb{R}^2 \rtimes \mathsf{SO}(2))/H_0 \simeq \mathbb{R} \times \mathbb{S}^1$ carries coordinates (p,q) and has symplectic measure $\mathrm{d}p \wedge \mathrm{d}q$.

- Now G = E(2), where $V = \mathbb{R}^2$ and S = SO(2), so $E(2) = \mathbb{R}^2 \rtimes SO(2) = \{(\mathbf{r}, \theta), \mathbf{r} \in \mathbb{R}^2, \theta \in [0, 2\pi)\}$, with composition $(\mathbf{r}, \theta)(\mathbf{r}', \theta') = (\mathbf{r} + \mathcal{R}(\theta)\mathbf{r}', \theta + \theta')$.
- $V^* = \mathbb{R}^2$, $\mathcal{O}^* = \{ \mathbf{k} = \mathcal{R}(\theta) \mathbf{k}_0 \in \mathbb{R}^2 \, | \, \mathcal{R}(\theta) \in \mathsf{SO}(2) \} \simeq \mathbb{S}^1$
- The stabilizer under the coadjoint action $\mathrm{Ad}_{\mathsf{E}(2)}^\#$ is $H_0 = \{(\mathbf{x},0) \in \mathsf{E}(2) | \hat{\mathbf{c}} \cdot \mathbf{x} = 0, \ \hat{\mathbf{c}} \in \mathbb{R}^2, \ \|\hat{\mathbf{c}}\| = 1, \ \mathrm{fixed}\}.$
- The classical phase space $X \equiv T^*\mathbb{S}^1 \simeq (\mathbb{R}^2 \rtimes \mathsf{SO}(2))/H_0 \simeq \mathbb{R} \times \mathbb{S}^1$ carries coordinates (p,q) and has symplectic measure $\mathrm{d}p \wedge \mathrm{d}q$.
- The UIR of E(2) are $L^2(\mathbb{S}^1, d\alpha) \ni \psi(\alpha) \mapsto (U(\mathbf{r}, \theta)\psi)(\alpha) = e^{i(\mathbf{r}_1 \cos \alpha + \mathbf{r}_2 \sin \alpha)}\psi(\alpha \theta).$

Coherent states for E(2)

Theorem

Given the unit vector $\hat{\boldsymbol{c}} \in \mathbb{R}^2$ and the corresponding subgroup H_0 , there exists a family of affine sections $\sigma: \mathbb{R} \times \mathbb{S}^1 \to E(2)$ defined as $\sigma(p,q) = (\mathcal{R}(q)(\kappa p + \lambda),q)$, where $\kappa,\lambda \in \mathbb{R}^2$ are constant vectors, and $\hat{\boldsymbol{c}} \cdot \kappa \neq 0$.

$\mathsf{Theorem}$

Given the unit vector $\hat{\boldsymbol{c}} \in \mathbb{R}^2$ and the corresponding subgroup H_0 , there exists a family of affine sections $\sigma: \mathbb{R} \times \mathbb{S}^1 \to E(2)$ defined as $\sigma(p,q) = (\mathcal{R}(q)(\kappa p + \lambda),q)$, where $\kappa,\lambda \in \mathbb{R}^2$ are constant vectors, and $\hat{\boldsymbol{c}} \cdot \kappa \neq 0$.

From the section $\sigma(p,q)$, the representation $U(\mathbf{r},\theta)$, and a vector $\eta \in L^2(\mathbb{S}^1, d\alpha)$, we define the family of states $|\eta_{p,q}\rangle = U(\sigma(p,q))|\eta\rangle$.

Theorem

Given the unit vector $\hat{\boldsymbol{c}} \in \mathbb{R}^2$ and the corresponding subgroup H_0 , there exists a family of affine sections $\sigma: \mathbb{R} \times \mathbb{S}^1 \to E(2)$ defined as $\sigma(p,q) = (\mathcal{R}(q)(\kappa p + \lambda),q)$, where $\kappa,\lambda \in \mathbb{R}^2$ are constant vectors, and $\hat{\boldsymbol{c}} \cdot \kappa \neq 0$.

From the section $\sigma(p,q)$, the representation $U(\mathbf{r},\theta)$, and a vector $\eta \in L^2(\mathbb{S}^1, d\alpha)$, we define the family of states $|\eta_{p,q}\rangle = U(\sigma(p,q))|\eta\rangle$.

Theorem

The vectors $\eta_{p,q}$ form a family of coherent states for E(2) which resolves the identity on $L^2(\mathbb{S}^1,\mathrm{d}\alpha)$, $I=\int_{\mathbb{R}\times\mathbb{S}^1}\frac{\mathrm{d}p\,\mathrm{d}q}{c_\eta}\,|\,\eta_{p,q}\,\rangle\langle\,\eta_{p,q}\,|$, if $\eta(\alpha)$ is <u>admissible</u> in the sense that supp $\eta\in(\gamma-\pi,\gamma)\,\mathrm{mod}\,2\pi$, and $0< c_\eta:=\frac{2\pi}{\kappa}\int_{\mathbb{S}^1}\frac{|\eta(q)|^2}{\sin(\gamma-q)}\,\mathrm{d}q<\infty$.

• Given the family of coherent states $|\eta_{p,q}\rangle$, we apply the linear map $f\mapsto A_f^\sigma=\int_{\mathbb{R}\times\mathbb{S}^1} \frac{\mathrm{d} p\,\mathrm{d} q}{c_\eta} f(p,q)\,|\,\eta_{p,q}\,\rangle\langle\,\eta_{p,q}\,|$ to classical observables f(p,q).

- Given the family of coherent states $|\eta_{p,q}\rangle$, we apply the linear map $f\mapsto A_f^\sigma=\int_{\mathbb{R}\times\mathbb{S}^1} \frac{\mathrm{d} p\,\mathrm{d} q}{c_\eta} f(p,q)\,|\,\eta_{p,q}\,\rangle\langle\,\eta_{p,q}\,|$ to classical observables f(p,q).
- For f(p,q)=u(q) with $u(q+2\pi)=u(q)$, A_u is the multiplication operator $(A_u\psi)(\alpha)=(E_{\eta;\gamma}*u)(\alpha)\psi(\alpha)$ where $E_{\eta;\gamma}(\alpha):=\frac{2\pi}{\kappa c_\eta}\frac{|\eta(\alpha)|^2}{\sin(\gamma-\alpha)}$, supp $E_{\eta;\gamma}\subset (\gamma-\pi,\gamma)$ is a probability distribution on the interval $[-\pi,\pi]$.

- Given the family of coherent states $|\eta_{p,q}\rangle$, we apply the linear map $f\mapsto A_f^\sigma=\int_{\mathbb{R}\times\mathbb{S}^1} \frac{\mathrm{d} p\,\mathrm{d} q}{c_\eta} f(p,q)\,|\,\eta_{p,q}\,\rangle\langle\,\eta_{p,q}\,|$ to classical observables f(p,q).
- For f(p,q)=u(q) with $u(q+2\pi)=u(q)$, A_u is the multiplication operator $(A_u\psi)(\alpha)=(E_{\eta;\gamma}*u)(\alpha)\psi(\alpha)$ where $E_{\eta;\gamma}(\alpha):=\frac{2\pi}{\kappa c_\eta}\frac{|\eta(\alpha)|^2}{\sin(\gamma-\alpha)}$, supp $E_{\eta;\gamma}\subset (\gamma-\pi,\gamma)$ is a probability distribution on the interval $[-\pi,\pi]$.
- In particular, for the Fourier exponential $e_n(\alpha) = e^{in\alpha}$, $n \in \mathbb{Z}$, the above expression is $(E_{\eta;\gamma} * e_n)(\alpha) = 2\pi c_n(E_{\eta;\gamma}) e^{in\alpha}$.

- Given the family of coherent states $|\eta_{p,q}\rangle$, we apply the linear map $f\mapsto A_f^\sigma=\int_{\mathbb{R}\times\mathbb{S}^1} \frac{\mathrm{d} p\,\mathrm{d} q}{c_\eta} f(p,q)\,|\,\eta_{p,q}\,\rangle\langle\,\eta_{p,q}\,|$ to classical observables f(p,q).
- For f(p,q)=u(q) with $u(q+2\pi)=u(q)$, A_u is the multiplication operator $(A_u\psi)(\alpha)=(E_{\eta;\gamma}*u)(\alpha)\psi(\alpha)$ where $E_{\eta;\gamma}(\alpha):=\frac{2\pi}{\kappa c_\eta}\frac{|\eta(\alpha)|^2}{\sin(\gamma-\alpha)}$, supp $E_{\eta;\gamma}\subset (\gamma-\pi,\gamma)$ is a probability distribution on the interval $[-\pi,\pi]$.
- In particular, for the Fourier exponential $e_n(\alpha) = e^{in\alpha}$, $n \in \mathbb{Z}$, the above expression is $(E_{\eta;\gamma} * e_n)(\alpha) = 2\pi c_n(E_{\eta;\gamma}) e^{in\alpha}$.
- For the momentum f(p,q) = p, $(A_p \psi)(\alpha) = \left(-i \frac{c_2(\eta, \gamma)}{\kappa c_1(\eta, \gamma)} \frac{\partial}{\partial \alpha} \lambda a\right) \psi(\alpha) \text{ for real } \eta.$

- Given the family of coherent states $|\eta_{p,q}\rangle$, we apply the linear map $f\mapsto A_f^\sigma=\int_{\mathbb{R}\times\mathbb{S}^1} \frac{\mathrm{d} p\,\mathrm{d} q}{c_\eta} f(p,q)\,|\,\eta_{p,q}\,\rangle\langle\,\eta_{p,q}\,|$ to classical observables f(p,q).
- For f(p,q)=u(q) with $u(q+2\pi)=u(q)$, A_u is the multiplication operator $(A_u\psi)(\alpha)=(E_{\eta;\gamma}*u)(\alpha)\psi(\alpha)$ where $E_{\eta;\gamma}(\alpha):=\frac{2\pi}{\kappa c_\eta}\frac{|\eta(\alpha)|^2}{\sin(\gamma-\alpha)}$, supp $E_{\eta;\gamma}\subset (\gamma-\pi,\gamma)$ is a probability distribution on the interval $[-\pi,\pi]$.
- In particular, for the Fourier exponential $e_n(\alpha) = e^{in\alpha}$, $n \in \mathbb{Z}$, the above expression is $(E_{\eta;\gamma} * e_n)(\alpha) = 2\pi c_n(E_{\eta;\gamma}) e^{in\alpha}$.
- For the momentum f(p,q) = p, $(A_p \psi)(\alpha) = \left(-i \frac{c_2(\eta, \gamma)}{\kappa c_1(\eta, \gamma)} \frac{\partial}{\partial \alpha} \lambda a\right) \psi(\alpha) \text{ for real } \eta.$
- For a general polynomial $f(q, p) = \sum_{k=0}^{N} u_k(q) p^k$ one gets $\sum_{k=0}^{N} a_k(\alpha) (-i\partial_{\alpha})^k$.

• For the 2π -periodic and discontinuous angle function $\mathbf{a}(\alpha) = \alpha$ for $\alpha \in [0, 2\pi)$, we get the multiplication operator $(\mathcal{E}_{\eta,\gamma} * \mathbf{a})(\alpha) = \alpha + 2\pi (1 - \int_{-\pi}^{\alpha} \mathcal{E}_{\eta;\gamma}(q) \, \mathrm{d}q) - \int_{\gamma-\pi}^{\gamma} q \, \mathcal{E}_{\eta,\gamma}(q) \, \mathrm{d}q$.

the Angle operator: analytic and numerical results

- For the 2π -periodic and discontinuous angle function $\mathbf{a}(\alpha) = \alpha$ for $\alpha \in [0, 2\pi)$, we get the multiplication operator $(E_{\eta,\gamma}*\mathbf{a})(\alpha) = \alpha + 2\pi(1 \int_{-\pi}^{\alpha} E_{\eta;\gamma}(q) \,\mathrm{d}q) \int_{\gamma-\pi}^{\gamma} q \, E_{\eta,\gamma}(q) \,\mathrm{d}q$.
- We choose a specific section with $\lambda=0,\ \gamma=\pi/2$ and as fiducial vectors the family $\eta^{(s,\epsilon)}(\alpha)$ of periodic smooth even functions, $\operatorname{supp} \eta=[-\epsilon,\epsilon] \mod 2\pi$, parametrized by s>0 and $0<\epsilon<\pi/2$,

$$\eta^{(s,\epsilon)}(\alpha) = \frac{1}{\sqrt{\epsilon e_{2s}}} \, \omega_s \left(\frac{\alpha}{\epsilon}\right) \quad \text{where} \quad e_s := \int_{-1}^1 \mathrm{d}x \, \omega_s(x) \, .$$

and

$$\omega_s(x) = \left\{ egin{array}{ll} \exp\left(-rac{s}{1-x^2}
ight) & 0 \leq |x| < 1\,, \ 0 & |x| \geq 1\,, \end{array}
ight.$$

are smooth and compactly supported test functions.

- For the 2π -periodic and discontinuous angle function $\mathbf{a}(\alpha) = \alpha$ for $\alpha \in [0, 2\pi)$, we get the multiplication operator $(E_{\eta,\gamma}*\mathbf{a})(\alpha) = \alpha + 2\pi(1 \int_{-\pi}^{\alpha} E_{\eta;\gamma}(q) \,\mathrm{d}q) \int_{\gamma-\pi}^{\gamma} q \, E_{\eta,\gamma}(q) \,\mathrm{d}q$.
- We choose a specific section with $\lambda=0$, $\gamma=\pi/2$ and as fiducial vectors the family $\eta^{(s,\epsilon)}(\alpha)$ of periodic smooth even functions, $\operatorname{supp} \eta=[-\epsilon,\epsilon] \mod 2\pi$, parametrized by s>0 and $0<\epsilon<\pi/2$,

$$\eta^{(s,\epsilon)}(\alpha) = \frac{1}{\sqrt{\epsilon e_{2s}}} \, \omega_s \left(\frac{\alpha}{\epsilon}\right) \quad \text{where} \quad e_s := \int_{-1}^1 \mathrm{d}x \, \omega_s(x) \, .$$

and

$$\omega_s(x) = \left\{ egin{array}{ll} \exp\left(-rac{s}{1-x^2}
ight) & 0 \leq |x| < 1\,, \ 0 & |x| \geq 1\,, \end{array}
ight.$$

are smooth and compactly supported test functions.

$$\bullet \ \left(\eta^{(s,\epsilon)}\right)^2(\alpha) o \delta(\alpha) \quad \text{as} \quad \epsilon o 0 \quad \text{or as} \quad s o \infty.$$

Figure: Plots of $\eta^{(s,\epsilon)}$ for various values of $\tau = \frac{s}{\epsilon^2}$.

Figure: Plots of $\left(E_{\eta^{(s,\epsilon)};\frac{\pi}{2}}*\boldsymbol{a}\right)(\alpha)$ for various values of $\tau=\frac{s}{\epsilon^2}$.

Figure: Plots of the lower symbol $\check{q}(q)$ of the angle operator $A_{\pmb{a}}$ for various values of $\tau = \frac{s}{\epsilon^2}$.

Angle-angular momentum: commutation relations and **UFABC** Heisenberg inequality

• For $\lambda=0$ and $\psi(\alpha)\in L^2(\mathbb{S}^1,\mathrm{d}\alpha)$, we find the non-canonical CR $([A_p,A_{\boldsymbol{a}}]\psi)(\alpha)=-\mathrm{ic}\,(1-2\pi E_{\eta;\gamma}(\alpha))\,\psi(\alpha)$ where $\mathrm{c}:=\frac{c_2(\eta,\gamma)}{\kappa c_1(\eta,\gamma)}$

Angle-angular momentum: commutation relations and UFABC Heisenberg inequality

- For $\lambda=0$ and $\psi(\alpha)\in L^2(\mathbb{S}^1,\mathrm{d}\alpha)$, we find the non-canonical CR $([A_p,A_{\boldsymbol{a}}]\psi)(\alpha)=-\mathrm{ic}\,(1-2\pi E_{\eta;\gamma}(\alpha))\,\psi(\alpha)$ where $\mathrm{c}:=\frac{c_2(\eta,\gamma)}{\kappa c_1(\eta,\gamma)}$
- Since $\lim_{\epsilon \to 0} \frac{c_2(\eta^{(s,\epsilon)},\frac{\pi}{2})}{c_1(\eta^{(s,\epsilon)},\frac{\pi}{2})} = 1$ and $\lim_{\epsilon \to 0} E_{\eta;\gamma}(\alpha) = \delta(\alpha)$, with the choice $\kappa = 1$ one has, in the limit $\epsilon \to 0$, for $\alpha \in [0,2\pi)$ mod 2π , $([A_p,A_{\pmb{\partial}}]\psi)(\alpha) = (-\mathrm{i} + \mathrm{i} 2\pi\delta(\alpha))\psi(\alpha)$.

Angle-angular momentum: commutation relations and UFABC Heisenberg inequality

- For $\lambda=0$ and $\psi(\alpha)\in L^2(\mathbb{S}^1,\mathrm{d}\alpha)$, we find the non-canonical CR $([A_p,A_{\pmb{a}}]\psi)(\alpha)=-\mathrm{ic}\,(1-2\pi E_{\eta;\gamma}(\alpha))\,\psi(\alpha)$ where $\mathrm{c}:=\frac{c_2(\eta,\gamma)}{\kappa c_1(\eta,\gamma)}$
- Since $\lim_{\epsilon \to 0} \frac{c_2(\eta^{(s,\epsilon)},\frac{\pi}{2})}{c_1(\eta^{(s,\epsilon)},\frac{\pi}{2})} = 1$ and $\lim_{\epsilon \to 0} E_{\eta;\gamma}(\alpha) = \delta(\alpha)$, with the choice $\kappa = 1$ one has, in the limit $\epsilon \to 0$, for $\alpha \in [0,2\pi)$ mod 2π , $([A_p,A_{\pmb{a}}]\psi)(\alpha) = (-\mathrm{i} + \mathrm{i} 2\pi\delta(\alpha))\psi(\alpha)$.
- The uncertainty relation for A_p and A_a , with the coherent states $\eta_{p,q}$, is $\Delta A_p \Delta A_a \geqslant \frac{1}{2} |\langle \eta_{p,q} | [A_p, A_a] | \eta_{p,q} \rangle|$.

Figure: Plots of the dispersions ΔA_{a} and ΔA_{p} with respect to the coherent state $|\eta_{p,q}^{(s,\epsilon)}\rangle$ for various values of $\tau=\frac{s}{\epsilon^{2}}$.

Figure: Plots of the difference L.H.S.-R.H.S. of the uncertainty relation with respect to the coherent state $|\eta_{p,q}^{(s,\epsilon)}\rangle$ for various values of $\tau=\frac{s}{\epsilon^2}$.

 We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group E(2).

- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group E(2).
- The cylinder $\mathbb{R} \times \mathbb{S}^1$ depicts the classical phase space of the motion of a particle on a circle, and is mathematically realized as the left coset E(2)/H, where H is a stabilizer subgroup under the coadjoint action of E(2).

- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group E(2).
- The cylinder $\mathbb{R} \times \mathbb{S}^1$ depicts the classical phase space of the motion of a particle on a circle, and is mathematically realized as the left coset E(2)/H, where H is a stabilizer subgroup under the coadjoint action of E(2).
- The coherent states for E(2) are constructed from a UIR of E(2) = $\mathbb{R}^2 \rtimes SO(2)$ restricted to an affine section $\mathbb{R} \times \mathbb{S}^1 \ni (p,q) \mapsto \sigma(p,q) \in E(2)$.

- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group E(2).
- The cylinder $\mathbb{R} \times \mathbb{S}^1$ depicts the classical phase space of the motion of a particle on a circle, and is mathematically realized as the left coset E(2)/H, where H is a stabilizer subgroup under the coadjoint action of E(2).
- The coherent states for E(2) are constructed from a UIR of E(2) = $\mathbb{R}^2 \rtimes SO(2)$ restricted to an affine section $\mathbb{R} \times \mathbb{S}^1 \ni (p,q) \mapsto \sigma(p,q) \in E(2)$.
- For functions on the cylindric phase space, the corresponding operators and lower symbols are determined . For periodic functions f(q) of the angular coordinate q, the operators A_f are multiplication operators whose spectra are given by periodic functions.

- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group E(2).
- The cylinder $\mathbb{R} \times \mathbb{S}^1$ depicts the classical phase space of the motion of a particle on a circle, and is mathematically realized as the left coset E(2)/H, where H is a stabilizer subgroup under the coadjoint action of E(2).
- The coherent states for E(2) are constructed from a UIR of E(2) = $\mathbb{R}^2 \rtimes SO(2)$ restricted to an affine section $\mathbb{R} \times \mathbb{S}^1 \ni (p,q) \mapsto \sigma(p,q) \in E(2)$.
- For functions on the cylindric phase space, the corresponding operators and lower symbols are determined . For periodic functions f(q) of the angular coordinate q, the operators A_f are multiplication operators whose spectra are given by periodic functions.
- The angle function $a(\alpha) = \alpha$ is mapped to a SA multiplication angle operator $A_{\mathbf{a}}$ with continuous spectrum.

- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group E(2).
- The cylinder $\mathbb{R} \times \mathbb{S}^1$ depicts the classical phase space of the motion of a particle on a circle, and is mathematically realized as the left coset E(2)/H, where H is a stabilizer subgroup under the coadjoint action of E(2).
- The coherent states for E(2) are constructed from a UIR of E(2) = $\mathbb{R}^2 \rtimes SO(2)$ restricted to an affine section $\mathbb{R} \times \mathbb{S}^1 \ni (p,q) \mapsto \sigma(p,q) \in E(2)$.
- For functions on the cylindric phase space, the corresponding operators and lower symbols are determined. For periodic functions f(q) of the angular coordinate q, the operators A_f are multiplication operators whose spectra are given by periodic functions.
- The angle function $a(\alpha) = \alpha$ is mapped to a SA multiplication angle operator A_a with continuous spectrum.
- For a particular family of coherent states, it is shown that the spectrum is $[\pi m(s, \epsilon), \pi + m(s, \epsilon)]$, where $m(s, \epsilon) \to \pi$ as $\epsilon \to 0$ or $s \to \infty$.

obrigado!

Figure: UFABC Campus in Santo André, São Paulo