Quantum Localisation on the Circle

XXth International Conference on Geometry, Integrability and Quantization

Rodrigo Fresneda (UFABC - São Paulo, Brasil)

Varna, 6th of June of 2018

J. Math. Phys., 59(5), 52105 (2018), in collaboration with J.P. Gazeau (Univ. Paris-Diderot) and D. Noguera (CBPF, Rio de Janeiro)

- If $\psi(\alpha)$ is the 2π-periodic wave function on the circle, the quantum angle $\widehat{\alpha}$ cannot be a multiplication operator, $\widehat{\alpha} \psi(\alpha)=\alpha \psi(\alpha)$ without breaking periodicity.
- If $\psi(\alpha)$ is the 2π-periodic wave function on the circle, the quantum angle $\widehat{\alpha}$ cannot be a multiplication operator, $\widehat{\alpha} \psi(\alpha)=\alpha \psi(\alpha)$ without breaking periodicity.
- Except if $\widehat{\alpha}$ stands for the 2π-periodic discontinuous angle function,

$$
\begin{equation*}
(\widehat{\alpha} \psi)(\alpha):=\left(\alpha-2 \pi\left\lfloor\frac{\alpha}{2 \pi}\right\rfloor\right) \psi(\alpha) \tag{1}
\end{equation*}
$$

- If $\psi(\alpha)$ is the 2π-periodic wave function on the circle, the quantum angle $\widehat{\alpha}$ cannot be a multiplication operator, $\widehat{\alpha} \psi(\alpha)=\alpha \psi(\alpha)$ without breaking periodicity.
- Except if $\widehat{\alpha}$ stands for the 2π-periodic discontinuous angle function,

$$
\begin{equation*}
(\widehat{\alpha} \psi)(\alpha):=\left(\alpha-2 \pi\left\lfloor\frac{\alpha}{2 \pi}\right\rfloor\right) \psi(\alpha) . \tag{1}
\end{equation*}
$$

- However, for $\widehat{\alpha}$ Self-Adjoint $(S A), \operatorname{spec}(\widehat{\alpha}) \subset[0,2 \pi]$, the CCR $\left[\widehat{\alpha}, \widehat{p}_{\alpha}\right]=\mathrm{i} \hbar l$ does not hold for SA quantum angular momentum $\widehat{p}_{\alpha}=-\mathrm{i} \hbar \frac{\partial}{\partial \alpha}$.
- If $\psi(\alpha)$ is the 2π-periodic wave function on the circle, the quantum angle $\widehat{\alpha}$ cannot be a multiplication operator, $\widehat{\alpha} \psi(\alpha)=\alpha \psi(\alpha)$ without breaking periodicity.
- Except if $\widehat{\alpha}$ stands for the 2π-periodic discontinuous angle function,

$$
\begin{equation*}
(\widehat{\alpha} \psi)(\alpha):=\left(\alpha-2 \pi\left\lfloor\frac{\alpha}{2 \pi}\right\rfloor\right) \psi(\alpha) . \tag{1}
\end{equation*}
$$

- However, for $\widehat{\alpha}$ Self-Adjoint $(S A)$, $\operatorname{spec}(\widehat{\alpha}) \subset[0,2 \pi]$, the CCR $\left[\widehat{\alpha}, \widehat{p}_{\alpha}\right]=\mathrm{i} \hbar l$ does not hold for SA quantum angular momentum $\widehat{p}_{\alpha}=-\mathrm{i} \hbar \frac{\partial}{\partial \alpha}$.
- Instead, one has

$$
\begin{equation*}
\left[\widehat{\alpha}, \widehat{p}_{\alpha}\right]=i \hbar l\left[1-2 \pi \sum_{n} \delta(\alpha-2 n \pi)\right] \tag{2}
\end{equation*}
$$

- This is an old problem (dating back to Dirac "The Quantum Theory of the Emission and Absorption of Radiation").
- This is an old problem (dating back to Dirac "The Quantum Theory of the Emission and Absorption of Radiation").
- Most approaches rely on replacing the angle operator by a quantum version of a smooth periodic function of the classical angle at the cost of losing localisation.
- This is an old problem (dating back to Dirac "The Quantum Theory of the Emission and Absorption of Radiation").
- Most approaches rely on replacing the angle operator by a quantum version of a smooth periodic function of the classical angle at the cost of losing localisation.
- We revisit the problem of the quantum angle through coherent state (CS) quantisation, which is a particular method belonging to covariant integral quantisation (S.T. Ali, J.-P. Antoine, and J.-P. Gazeau, Coherent States, Wavelets and their Generalizations).
- This is an old problem (dating back to Dirac "The Quantum Theory of the Emission and Absorption of Radiation").
- Most approaches rely on replacing the angle operator by a quantum version of a smooth periodic function of the classical angle at the cost of losing localisation.
- We revisit the problem of the quantum angle through coherent state (CS) quantisation, which is a particular method belonging to covariant integral quantisation (S.T. Ali, J.-P. Antoine, and J.-P. Gazeau, Coherent States, Wavelets and their Generalizations).
- Our approach is group theoretical, based on the unitary irreducible representations of the (special) Euclidean group $E(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)$ (see also S . De Bièvre, Coherent states over symplectic homogeneous spaces).
- This is an old problem (dating back to Dirac "The Quantum Theory of the Emission and Absorption of Radiation").
- Most approaches rely on replacing the angle operator by a quantum version of a smooth periodic function of the classical angle at the cost of losing localisation.
- We revisit the problem of the quantum angle through coherent state (CS) quantisation, which is a particular method belonging to covariant integral quantisation (S.T. Ali, J.-P. Antoine, and J.-P. Gazeau, Coherent States, Wavelets and their Generalizations).
- Our approach is group theoretical, based on the unitary irreducible representations of the (special) Euclidean group $E(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)$ (see also S. De Bièvre, Coherent states over symplectic homogeneous spaces).
- One of our aims is to build acceptable angle operators from the classical angle function through a consistent and manageable quantisation procedure.

Covariant integral quantisation - general scheme

- Let G be a Lie group with left Haar measure $d \mu(g)$ and $g \mapsto U(g)$ a UIR of G in \mathcal{H}. For $\rho \in B(\mathcal{H})$, suppose the following operator is defined in a weak sense:

$$
R:=\int_{G} \rho(g) \mathrm{d} \mu(g), \rho(g):=U(g) \rho U^{\dagger}(g)
$$

Covariant integral quantisation - general scheme

- Let G be a Lie group with left Haar measure $d \mu(g)$ and $g \mapsto U(g)$ a UIR of G in \mathcal{H}. For $\rho \in B(\mathcal{H})$, suppose the following operator is defined in a weak sense:

$$
R:=\int_{G} \rho(g) \mathrm{d} \mu(g), \rho(g):=U(g) \rho U^{\dagger}(g)
$$

- Then, $R=c_{\rho} I$, since $U\left(g_{0}\right) R U^{\dagger}\left(g_{0}\right)=\int_{G} \rho\left(g_{0} g\right) \mathrm{d} \mu(g)=R$

Covariant integral quantisation - general scheme

- Let G be a Lie group with left Haar measure $d \mu(g)$ and $g \mapsto U(g)$ a UIR of G in \mathcal{H}. For $\rho \in B(\mathcal{H})$, suppose the following operator is defined in a weak sense:

$$
R:=\int_{G} \rho(g) \mathrm{d} \mu(g), \rho(g):=U(g) \rho U^{\dagger}(g)
$$

- Then, $R=c_{\rho} I$, since $U\left(g_{0}\right) R U^{\dagger}\left(g_{0}\right)=\int_{G} \rho\left(g_{0} g\right) \mathrm{d} \mu(g)=R$
- That is, the family of operators $\rho(g)$ provides a resolution of the identity

$$
\int_{G} \rho(g) \frac{\mathrm{d} \mu(g)}{c_{\rho}}=I, \quad c_{\rho}=\int_{G} \operatorname{tr}\left(\rho_{0} \rho(g)\right) \mathrm{d} \mu(g)
$$

Covariant integral quantisation - general scheme

- Let G be a Lie group with left Haar measure $d \mu(g)$ and $g \mapsto U(g)$ a UIR of G in \mathcal{H}. For $\rho \in B(\mathcal{H})$, suppose the following operator is defined in a weak sense:

$$
R:=\int_{G} \rho(g) \mathrm{d} \mu(g), \rho(g):=U(g) \rho U^{\dagger}(g)
$$

- Then, $R=c_{\rho} I$, since $U\left(g_{0}\right) R U^{\dagger}\left(g_{0}\right)=\int_{G} \rho\left(g_{0} g\right) \mathrm{d} \mu(g)=R$
- That is, the family of operators $\rho(g)$ provides a resolution of the identity

$$
\int_{G} \rho(g) \frac{\mathrm{d} \mu(g)}{c_{\rho}}=I, \quad c_{\rho}=\int_{G} \operatorname{tr}\left(\rho_{0} \rho(g)\right) \mathrm{d} \mu(g)
$$

- This allows an integral quantisation of complex-valued functions on the group

$$
f \mapsto A_{f}=\int_{G} \rho(g) f(g) \frac{\mathrm{d} \mu(g)}{c_{\rho}},
$$

Covariant integral quantisation - general scheme

- Let G be a Lie group with left Haar measure $d \mu(g)$ and $g \mapsto U(g)$ a UIR of G in \mathcal{H}. For $\rho \in B(\mathcal{H})$, suppose the following operator is defined in a weak sense:

$$
R:=\int_{G} \rho(g) \mathrm{d} \mu(g), \rho(g):=U(g) \rho U^{\dagger}(g)
$$

- Then, $R=c_{\rho} I$, since $U\left(g_{0}\right) R U^{\dagger}\left(g_{0}\right)=\int_{G} \rho\left(g_{0} g\right) \mathrm{d} \mu(g)=R$
- That is, the family of operators $\rho(g)$ provides a resolution of the identity

$$
\int_{G} \rho(g) \frac{\mathrm{d} \mu(g)}{c_{\rho}}=I, \quad c_{\rho}=\int_{G} \operatorname{tr}\left(\rho_{0} \rho(g)\right) \mathrm{d} \mu(g)
$$

- This allows an integral quantisation of complex-valued functions on the group

$$
f \mapsto A_{f}=\int_{G} \rho(g) f(g) \frac{\mathrm{d} \mu(g)}{c_{\rho}},
$$

- which is covariant in the sense that

$$
U(g) A_{f} U^{\dagger}(g)=A_{U(g) f},(U(g) f)\left(g^{\prime}\right)=f\left(g^{-1} g^{\prime}\right)
$$

- We consider the quantisation of functions on a homogeneous space X, the left coset manifold $X \sim G / H$ for the action of a Lie Group G, where the closed subgroup H is the stabilizer of some point of X.
- We consider the quantisation of functions on a homogeneous space X, the left coset manifold $X \sim G / H$ for the action of a Lie Group G, where the closed subgroup H is the stabilizer of some point of X.
- The interesting case is when X is a symplectic manifold (e.g., co-adjoint orbit of G) and can be viewed as the phase space for the dynamics.
- We consider the quantisation of functions on a homogeneous space X, the left coset manifold $X \sim G / H$ for the action of a Lie Group G, where the closed subgroup H is the stabilizer of some point of X.
- The interesting case is when X is a symplectic manifold (e.g., co-adjoint orbit of G) and can be viewed as the phase space for the dynamics.
- Given a quasi-invariant measure ν on X, one has for a global Borel section $\sigma: X \rightarrow G$ a unique quasi-invariant measure $\nu_{\sigma}(x)$.
- We consider the quantisation of functions on a homogeneous space X, the left coset manifold $X \sim G / H$ for the action of a Lie Group G, where the closed subgroup H is the stabilizer of some point of X.
- The interesting case is when X is a symplectic manifold (e.g., co-adjoint orbit of G) and can be viewed as the phase space for the dynamics.
- Given a quasi-invariant measure ν on X, one has for a global Borel section $\sigma: X \rightarrow G$ a unique quasi-invariant measure $\nu_{\sigma}(x)$.
- Let U be a square-integrable UIR, and ρ_{0} a density operator such that $c_{\rho}:=\int_{X} \operatorname{tr}\left(\rho_{0} \rho_{\sigma}(x)\right) \mathrm{d} \nu_{\sigma}(x)<\infty \quad$ with $\rho_{\sigma}(x):=U(\sigma(x)) \rho U(\sigma(x))^{\dagger}$.
- One has the resolution of the identity

$$
I=\frac{1}{c_{\rho}} \int_{X} \rho_{\sigma}(x) \mathrm{d} \nu_{\sigma}(x) .
$$

- One has the resolution of the identity

$$
I=\frac{1}{c_{\rho}} \int_{X} \rho_{\sigma}(x) \mathrm{d} \nu_{\sigma}(x) .
$$

- We then define the quantisation of functions on X as the linear map

$$
f \mapsto A_{f}^{\sigma}=\frac{1}{c_{\rho}} \int_{X} f(x) \rho_{\sigma}(x) \mathrm{d} \nu_{\sigma}(x)
$$

- One has the resolution of the identity

$$
I=\frac{1}{c_{\rho}} \int_{X} \rho_{\sigma}(x) \mathrm{d} \nu_{\sigma}(x) .
$$

- We then define the quantisation of functions on X as the linear map

$$
f \mapsto A_{f}^{\sigma}=\frac{1}{c_{\rho}} \int_{X} f(x) \rho_{\sigma}(x) \mathrm{d} \nu_{\sigma}(x) .
$$

- Covariance holds in the sense $U(g) A_{f}^{\sigma} U(g)^{\dagger}=A_{\mathcal{U}_{l}(g) f}^{\sigma_{g}}$, where $\sigma_{g}(x)=g \sigma\left(g^{-1} x\right)$ with $\mathcal{U}_{l}(g) f(x)=f\left(g^{-1} x\right)$.
- For $\rho=|\eta\rangle\langle\eta|$, we are working with CS quantisation, where the CS's are defined as $\left|\eta_{x}\right\rangle:=\left|U\left(\sigma_{g}(x)\right) \eta\right\rangle$.
- Let $V, \operatorname{dim} V=n, S \leq G L(V)$ and $G=V \rtimes S$
- Let $V, \operatorname{dim} V=n, S \leq G L(V)$ and $G=V \rtimes S$
- Given $k_{0} \in V^{*}$, one can show that

$$
H_{0}=\left\{g \in G \mid\left(k_{0}, 0\right)=\operatorname{Ad}_{g}^{\#}\left(k_{0}, 0\right)\right\}=N_{0} \rtimes S_{0}
$$

for $\left(k_{0}, 0\right) \in \mathfrak{g}^{*}$

- Let $V, \operatorname{dim} V=n, S \leq G L(V)$ and $G=V \rtimes S$
- Given $k_{0} \in V^{*}$, one can show that

$$
H_{0}=\left\{g \in G \mid\left(k_{0}, 0\right)=\operatorname{Ad}_{g}^{\#}\left(k_{0}, 0\right)\right\}=N_{0} \rtimes S_{0}
$$

for $\left(k_{0}, 0\right) \in \mathfrak{g}^{*}$

- Furthermore, $X=G / H_{0} \simeq V_{0} \times \mathcal{O}^{*} \simeq T^{*} \mathcal{O}^{*}, V_{0}=T_{k_{0}}^{*} \mathcal{O}^{*}$, is a symplectic manifold with symplectic measure $\mathrm{d} \mu(\mathbf{p}, \mathbf{q})$ which allows the construction of a section $V_{0} \times \mathcal{O}^{*} \ni(\mathbf{p}, \mathbf{q}) \mapsto \sigma(\mathbf{p}, \mathbf{q}) \in G$
- Let $V, \operatorname{dim} V=n, S \leq G L(V)$ and $G=V \rtimes S$
- Given $k_{0} \in V^{*}$, one can show that

$$
H_{0}=\left\{g \in G \mid\left(k_{0}, 0\right)=\operatorname{Ad}_{g}^{\#}\left(k_{0}, 0\right)\right\}=N_{0} \rtimes S_{0}
$$

for $\left(k_{0}, 0\right) \in \mathfrak{g}^{*}$

- Furthermore, $X=G / H_{0} \simeq V_{0} \times \mathcal{O}^{*} \simeq T^{*} \mathcal{O}^{*}, V_{0}=T_{k_{0}}^{*} \mathcal{O}^{*}$, is a symplectic manifold with symplectic measure $\mathrm{d} \mu(\mathbf{p}, \mathbf{q})$ which allows the construction of a section
$V_{0} \times \mathcal{O}^{*} \ni(\mathbf{p}, \mathbf{q}) \mapsto \sigma(\mathbf{p}, \mathbf{q}) \in G$
- Finally, given a UIR χ of V and a UIR L of S, one can construct an irreducible representation $(v, s) \mapsto{ }^{\chi L} U(v, s)$ of G induced by the representation $\chi \otimes L$ of $V \rtimes S_{0}$.
- Let $V, \operatorname{dim} V=n, S \leq G L(V)$ and $G=V \rtimes S$
- Given $k_{0} \in V^{*}$, one can show that

$$
H_{0}=\left\{g \in G \mid\left(k_{0}, 0\right)=\operatorname{Ad}_{g}^{\#}\left(k_{0}, 0\right)\right\}=N_{0} \rtimes S_{0}
$$

for $\left(k_{0}, 0\right) \in \mathfrak{g}^{*}$

- Furthermore, $X=G / H_{0} \simeq V_{0} \times \mathcal{O}^{*} \simeq T^{*} \mathcal{O}^{*}, V_{0}=T_{k_{0}}^{*} \mathcal{O}^{*}$, is a symplectic manifold with symplectic measure $\mathrm{d} \mu(\mathbf{p}, \mathbf{q})$ which allows the construction of a section
$V_{0} \times \mathcal{O}^{*} \ni(\mathbf{p}, \mathbf{q}) \mapsto \sigma(\mathbf{p}, \mathbf{q}) \in G$
- Finally, given a UIR χ of V and a UIR L of S, one can construct an irreducible representation $(v, s) \mapsto{ }^{\chi L} U(v, s)$ of G induced by the representation $\chi \otimes L$ of $V \rtimes S_{0}$.
- Given $\eta \in \mathcal{H}=L^{2}\left(\mathcal{O}^{*}, d \nu\right)$, one constructs a family $\eta_{\mathbf{p}, \mathbf{q}}$: $\eta_{\mathbf{p}, \mathbf{q}}(k)=\left({ }^{\chi L} U(\sigma(\mathbf{p}, \mathbf{q})) \eta\right)(k)$

Coherent-state quantisation for semi-simple Lie groupsUFABC

- If one can prove

$$
\begin{aligned}
& \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left\langle\phi \mid \eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle_{\mathcal{H}}\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}} \mid \psi\right\rangle_{\mathcal{H}}=c_{\eta}\langle\phi \mid \psi\rangle \text { where } \\
& \phi, \psi: \mathcal{O}^{*} \rightarrow \mathbb{C} \text { and } 0<c_{\eta}<\infty
\end{aligned}
$$

Coherent-state quantisation for semi-simple Lie groupsuFABC

- If one can prove

$$
\begin{aligned}
& \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left\langle\phi \mid \eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle_{\mathcal{H}}\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}} \mid \psi\right\rangle_{\mathcal{H}}=c_{\eta}\langle\phi \mid \psi\rangle \text { where } \\
& \phi, \psi: \mathcal{O}^{*} \rightarrow \mathbb{C} \text { and } 0<c_{\eta}<\infty
\end{aligned}
$$

- we obtain the resolution of the identity
$\frac{1}{c_{\eta}} \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}}\right|=I$

Coherent-state quantisation for semi-simple Lie groupsuFABC

- If one can prove

$$
\begin{aligned}
& \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left\langle\phi \mid \eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle_{\mathcal{H}}\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}} \mid \psi\right\rangle_{\mathcal{H}}=c_{\eta}\langle\phi \mid \psi\rangle \text { where } \\
& \phi, \psi: \mathcal{O}^{*} \rightarrow \mathbb{C} \text { and } 0<c_{\eta}<\infty
\end{aligned}
$$

- we obtain the resolution of the identity
$\frac{1}{c_{\eta}} \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}}\right|=I$
- CS quantisation maps the classical function $f(\boldsymbol{p}, \boldsymbol{q}) \in V_{0} \times \mathcal{O}^{*}$ to the operator on \mathcal{H}

$$
A_{f}=\frac{1}{c_{\eta}} \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}}\right| f(\boldsymbol{p}, \boldsymbol{q})
$$

Coherent-state quantisation for semi-simple Lie groupsuFABC

- If one can prove
$\int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left\langle\phi \mid \eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle_{\mathcal{H}}\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}} \mid \psi\right\rangle_{\mathcal{H}}=c_{\eta}\langle\phi \mid \psi\rangle$ where $\phi, \psi: \mathcal{O}^{*} \rightarrow \mathbb{C}$ and $0<c_{\eta}<\infty$
- we obtain the resolution of the identity
$\frac{1}{c_{\eta}} \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}}\right|=I$
- CS quantisation maps the classical function $f(\boldsymbol{p}, \boldsymbol{q}) \in V_{0} \times \mathcal{O}^{*}$ to the operator on \mathcal{H} $A_{f}=\frac{1}{c_{\eta}} \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}}\right| f(\boldsymbol{p}, \boldsymbol{q})$
- The quantisation is covariant ${ }^{\chi L} U(g) A_{f}{ }^{\chi L} U(g)^{\dagger}=$ $A_{\mathcal{U}_{l}(g) f}^{\sigma_{g}}, \quad A_{f}^{\sigma_{g}}:=\frac{1}{c_{\eta}} \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}^{\sigma_{g}}\right\rangle\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}}^{\sigma_{g}}\right| f(\boldsymbol{p}, \boldsymbol{q})$, with $\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}^{\sigma_{\boldsymbol{g}}}\right\rangle={ }^{L} U\left(g \sigma\left(g^{-1}(\boldsymbol{p}, \boldsymbol{q})\right)\right)|\eta\rangle$

Coherent-state quantisation for semi-simple Lie groupsuFABC

- If one can prove
$\int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left\langle\phi \mid \eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle_{\mathcal{H}}\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}} \mid \psi\right\rangle_{\mathcal{H}}=c_{\eta}\langle\phi \mid \psi\rangle$ where $\phi, \psi: \mathcal{O}^{*} \rightarrow \mathbb{C}$ and $0<c_{\eta}<\infty$
- we obtain the resolution of the identity
$\frac{1}{c_{\eta}} \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}}\right|=I$
- CS quantisation maps the classical function $f(\boldsymbol{p}, \boldsymbol{q}) \in V_{0} \times \mathcal{O}^{*}$ to the operator on \mathcal{H}
$A_{f}=\frac{1}{c_{\eta}} \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}}\right| f(\boldsymbol{p}, \boldsymbol{q})$
- The quantisation is covariant ${ }^{\chi L} U(g) A_{f}{ }^{\chi L} U(g)^{\dagger}=$

$$
\begin{aligned}
& A_{\mathcal{U}_{l}(g) f}^{\sigma_{g}}, \quad A_{f}^{\sigma_{g}}:=\frac{1}{c_{\eta}} \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu(\boldsymbol{p}, \boldsymbol{q})\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}^{\sigma_{g}}\right\rangle\left\langle\eta_{\boldsymbol{p}, \boldsymbol{q}}^{\sigma_{g}}\right| f(\boldsymbol{p}, \boldsymbol{q}), \\
& \text { with }\left|\eta_{\boldsymbol{p}, \boldsymbol{q}}^{\sigma_{g}}\right\rangle=\chi L U\left(g \sigma\left(g^{-1}(\boldsymbol{p}, \boldsymbol{q})\right)\right)|\eta\rangle
\end{aligned}
$$

- The semiclassical portrait of the operator A_{f} is defined as

$$
\check{f}(\boldsymbol{p}, \boldsymbol{q})=\frac{1}{c_{\eta}} \int_{V_{0} \times \mathcal{O}^{*}} \mathrm{~d} \mu\left(\boldsymbol{p}^{\prime}, \boldsymbol{q}^{\prime}\right) f\left(\boldsymbol{p}^{\prime}, \boldsymbol{q}^{\prime}\right)\left|\left\langle\eta_{\boldsymbol{p}^{\prime}, \boldsymbol{q}^{\prime}} \mid \eta_{\boldsymbol{p}, \boldsymbol{q}}\right\rangle\right|^{2} .
$$

- Now $G=\mathrm{E}(2)$, where $V=\mathbb{R}^{2}$ and $S=\mathrm{SO}(2)$, so $\mathrm{E}(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)=\left\{(\boldsymbol{r}, \theta), \boldsymbol{r} \in \mathbb{R}^{2}, \theta \in[0,2 \pi)\right\}$, with composition $(\boldsymbol{r}, \theta)\left(\boldsymbol{r}^{\prime}, \theta^{\prime}\right)=\left(\boldsymbol{r}+\mathcal{R}(\theta) \boldsymbol{r}^{\prime}, \theta+\theta^{\prime}\right)$.
- Now $G=\mathrm{E}(2)$, where $V=\mathbb{R}^{2}$ and $S=\mathrm{SO}(2)$, so $\mathrm{E}(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)=\left\{(\boldsymbol{r}, \theta), \boldsymbol{r} \in \mathbb{R}^{2}, \theta \in[0,2 \pi)\right\}$, with composition $(\boldsymbol{r}, \theta)\left(\boldsymbol{r}^{\prime}, \theta^{\prime}\right)=\left(\boldsymbol{r}+\mathcal{R}(\theta) \boldsymbol{r}^{\prime}, \theta+\theta^{\prime}\right)$.
- $V^{*}=\mathbb{R}^{2}, \mathcal{O}^{*}=\left\{\boldsymbol{k}=\mathcal{R}(\theta) \boldsymbol{k}_{0} \in \mathbb{R}^{2} \mid \mathcal{R}(\theta) \in \mathrm{SO}(2)\right\} \simeq \mathbb{S}^{1}$
- Now $G=\mathrm{E}(2)$, where $V=\mathbb{R}^{2}$ and $S=\mathrm{SO}(2)$, so $\mathrm{E}(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)=\left\{(\boldsymbol{r}, \theta), \boldsymbol{r} \in \mathbb{R}^{2}, \theta \in[0,2 \pi)\right\}$, with composition $(\boldsymbol{r}, \theta)\left(\boldsymbol{r}^{\prime}, \theta^{\prime}\right)=\left(\boldsymbol{r}+\mathcal{R}(\theta) \boldsymbol{r}^{\prime}, \theta+\theta^{\prime}\right)$.
- $V^{*}=\mathbb{R}^{2}, \mathcal{O}^{*}=\left\{\boldsymbol{k}=\mathcal{R}(\theta) \boldsymbol{k}_{0} \in \mathbb{R}^{2} \mid \mathcal{R}(\theta) \in \mathrm{SO}(2)\right\} \simeq \mathbb{S}^{1}$
- The stabilizer under the coadjoint action $\operatorname{Ad}_{\mathrm{E}(2)}^{\#}$ is

$$
H_{0}=\left\{(\boldsymbol{x}, 0) \in \mathrm{E}(2) \mid \hat{\boldsymbol{c}} \cdot \boldsymbol{x}=0, \hat{\boldsymbol{c}} \in \mathbb{R}^{2},\|\hat{\boldsymbol{c}}\|=1, \text { fixed }\right\} .
$$

- Now $G=\mathrm{E}(2)$, where $V=\mathbb{R}^{2}$ and $S=\mathrm{SO}(2)$, so $\mathrm{E}(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)=\left\{(\boldsymbol{r}, \theta), \boldsymbol{r} \in \mathbb{R}^{2}, \theta \in[0,2 \pi)\right\}$, with composition $(\boldsymbol{r}, \theta)\left(\boldsymbol{r}^{\prime}, \theta^{\prime}\right)=\left(\boldsymbol{r}+\mathcal{R}(\theta) \boldsymbol{r}^{\prime}, \theta+\theta^{\prime}\right)$.
- $V^{*}=\mathbb{R}^{2}, \mathcal{O}^{*}=\left\{\boldsymbol{k}=\mathcal{R}(\theta) \boldsymbol{k}_{0} \in \mathbb{R}^{2} \mid \mathcal{R}(\theta) \in \mathrm{SO}(2)\right\} \simeq \mathbb{S}^{1}$
- The stabilizer under the coadjoint action $\operatorname{Ad}_{\mathrm{E}(2)}^{\#}$ is

$$
H_{0}=\left\{(\boldsymbol{x}, 0) \in \mathrm{E}(2) \mid \hat{\boldsymbol{c}} \cdot \boldsymbol{x}=0, \hat{\boldsymbol{c}} \in \mathbb{R}^{2},\|\hat{\boldsymbol{c}}\|=1, \text { fixed }\right\} .
$$

- The classical phase space
$X \equiv T^{*} \mathbb{S}^{1} \simeq\left(\mathbb{R}^{2} \rtimes \mathrm{SO}(2)\right) / H_{0} \simeq \mathbb{R} \times \mathbb{S}^{1}$ carries coordinates (p, q) and has symplectic measure $\mathrm{d} p \wedge \mathrm{~d} q$.
- Now $G=\mathrm{E}(2)$, where $V=\mathbb{R}^{2}$ and $S=\mathrm{SO}(2)$, so $\mathrm{E}(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)=\left\{(\boldsymbol{r}, \theta), \boldsymbol{r} \in \mathbb{R}^{2}, \theta \in[0,2 \pi)\right\}$, with composition $(\boldsymbol{r}, \theta)\left(\boldsymbol{r}^{\prime}, \theta^{\prime}\right)=\left(\boldsymbol{r}+\mathcal{R}(\theta) \boldsymbol{r}^{\prime}, \theta+\theta^{\prime}\right)$.
- $V^{*}=\mathbb{R}^{2}, \mathcal{O}^{*}=\left\{\boldsymbol{k}=\mathcal{R}(\theta) \boldsymbol{k}_{0} \in \mathbb{R}^{2} \mid \mathcal{R}(\theta) \in \mathrm{SO}(2)\right\} \simeq \mathbb{S}^{1}$
- The stabilizer under the coadjoint action $\operatorname{Ad}_{\mathrm{E}(2)}^{\#}$ is

$$
H_{0}=\left\{(\boldsymbol{x}, 0) \in \mathrm{E}(2) \mid \hat{\boldsymbol{c}} \cdot \boldsymbol{x}=0, \hat{\boldsymbol{c}} \in \mathbb{R}^{2},\|\hat{\boldsymbol{c}}\|=1, \text { fixed }\right\} .
$$

- The classical phase space
$X \equiv T^{*} \mathbb{S}^{1} \simeq\left(\mathbb{R}^{2} \rtimes \mathrm{SO}(2)\right) / H_{0} \simeq \mathbb{R} \times \mathbb{S}^{1}$ carries coordinates (p, q) and has symplectic measure $\mathrm{d} p \wedge \mathrm{~d} q$.
- The UIR of $\mathrm{E}(2)$ are $L^{2}\left(\mathbb{S}^{1}, \mathrm{~d} \alpha\right) \ni \psi(\alpha) \mapsto(U(\boldsymbol{r}, \theta) \psi)(\alpha)=$ $e^{\mathrm{i}\left(r_{1} \cos \alpha+r_{2} \sin \alpha\right)} \psi(\alpha-\theta)$.

Theorem

Given the unit vector $\hat{\boldsymbol{c}} \in \mathbb{R}^{2}$ and the corresponding subgroup H_{0}, there exists a family of affine sections $\sigma: \mathbb{R} \times \mathbb{S}^{1} \rightarrow E(2)$ defined as $\sigma(p, q)=(\mathcal{R}(q)(\kappa p+\boldsymbol{\lambda}), q)$, where $\boldsymbol{\kappa}, \boldsymbol{\lambda} \in \mathbb{R}^{2}$ are constant vectors, and $\hat{\boldsymbol{c}} \cdot \boldsymbol{\kappa} \neq 0$.

Theorem

Given the unit vector $\hat{\boldsymbol{c}} \in \mathbb{R}^{2}$ and the corresponding subgroup H_{0}, there exists a family of affine sections $\sigma: \mathbb{R} \times \mathbb{S}^{1} \rightarrow E(2)$ defined as $\sigma(p, q)=(\mathcal{R}(q)(\kappa p+\boldsymbol{\lambda}), q)$, where $\boldsymbol{\kappa}, \boldsymbol{\lambda} \in \mathbb{R}^{2}$ are constant vectors, and $\hat{\boldsymbol{c}} \cdot \boldsymbol{\kappa} \neq 0$.

From the section $\sigma(p, q)$, the representation $U(\mathbf{r}, \theta)$, and a vector $\eta \in L^{2}\left(\mathbb{S}^{1}, \mathrm{~d} \alpha\right)$, we define the family of states
$\left|\eta_{p, q}\right\rangle=U(\sigma(p, q))|\eta\rangle$.

Theorem

Given the unit vector $\hat{\boldsymbol{c}} \in \mathbb{R}^{2}$ and the corresponding subgroup H_{0}, there exists a family of affine sections $\sigma: \mathbb{R} \times \mathbb{S}^{1} \rightarrow E(2)$ defined as $\sigma(p, q)=(\mathcal{R}(q)(\kappa p+\boldsymbol{\lambda}), q)$, where $\boldsymbol{\kappa}, \boldsymbol{\lambda} \in \mathbb{R}^{2}$ are constant vectors, and $\hat{\boldsymbol{c}} \cdot \boldsymbol{\kappa} \neq 0$.

From the section $\sigma(p, q)$, the representation $U(\mathbf{r}, \theta)$, and a vector $\eta \in L^{2}\left(\mathbb{S}^{1}, \mathrm{~d} \alpha\right)$, we define the family of states
$\left|\eta_{p, q}\right\rangle=U(\sigma(p, q))|\eta\rangle$.

Theorem

The vectors $\eta_{p, q}$ form a family of coherent states for $E(2)$ which resolves the identity on $L^{2}\left(\mathbb{S}^{1}, \mathrm{~d} \alpha\right), I=\int_{\mathbb{R} \times \mathbb{S}^{1}} \frac{\mathrm{~d} p \mathrm{~d} q}{c_{\eta}}\left|\eta_{p, q}\right\rangle\left\langle\eta_{p, q}\right|$, if $\eta(\alpha)$ is admissible in the sense that supp $\eta \in(\gamma-\pi, \gamma) \bmod 2 \pi$, and $0<c_{\eta}:=\frac{2 \pi}{\kappa} \int_{\mathbb{S}^{1}} \frac{|\eta(q)|^{2}}{\sin (\gamma-q)} \mathrm{d} q<\infty$.

- Given the family of coherent states $\left|\eta_{p, q}\right\rangle$, we apply the linear $\operatorname{map} f \mapsto A_{f}^{\sigma}=\int_{\mathbb{R} \times \mathbb{S}^{1}} \frac{\mathrm{~d} p \mathrm{~d} q}{c_{\eta}} f(p, q)\left|\eta_{p, q}\right\rangle\left\langle\eta_{p, q}\right|$ to classical observables $f(p, q)$.
- Given the family of coherent states $\left|\eta_{p, q}\right\rangle$, we apply the linear $\operatorname{map} f \mapsto A_{f}^{\sigma}=\int_{\mathbb{R} \times \mathbb{S}^{1}} \frac{\mathrm{~d} p \mathrm{~d} q}{c_{\eta}} f(p, q)\left|\eta_{p, q}\right\rangle\left\langle\eta_{p, q}\right|$ to classical observables $f(p, q)$.
- For $f(p, q)=u(q)$ with $u(q+2 \pi)=u(q), A_{u}$ is the multiplication operator $\left(A_{u} \psi\right)(\alpha)=\left(E_{\eta ; \gamma} * u\right)(\alpha) \psi(\alpha)$ where $E_{\eta ; \gamma}(\alpha):=\frac{2 \pi}{\kappa c_{\eta}} \frac{|\eta(\alpha)|^{2}}{\sin (\gamma-\alpha)}, \operatorname{supp} E_{\eta ; \gamma} \subset(\gamma-\pi, \gamma)$ is a probability distribution on the interval $[-\pi, \pi]$.
- Given the family of coherent states $\left|\eta_{p, q}\right\rangle$, we apply the linear $\operatorname{map} f \mapsto A_{f}^{\sigma}=\int_{\mathbb{R} \times \mathbb{S}^{1}} \frac{\mathrm{~d} p \mathrm{~d} q}{c_{\eta}} f(p, q)\left|\eta_{p, q}\right\rangle\left\langle\eta_{p, q}\right|$ to classical observables $f(p, q)$.
- For $f(p, q)=u(q)$ with $u(q+2 \pi)=u(q), A_{u}$ is the multiplication operator $\left(A_{u} \psi\right)(\alpha)=\left(E_{\eta ; \gamma} * u\right)(\alpha) \psi(\alpha)$ where $E_{\eta ; \gamma}(\alpha):=\frac{2 \pi}{\kappa c_{\eta}} \frac{|\eta(\alpha)|^{2}}{\sin (\gamma-\alpha)}, \operatorname{supp} E_{\eta ; \gamma} \subset(\gamma-\pi, \gamma)$ is a probability distribution on the interval $[-\pi, \pi]$.
- In particular, for the Fourier exponential $e_{n}(\alpha)=e^{\text {in } \alpha}, n \in \mathbb{Z}$, the above expression is $\left(E_{\eta ; \gamma} * e_{n}\right)(\alpha)=2 \pi c_{n}\left(E_{\eta ; \gamma}\right) e^{\mathrm{i} n \alpha}$.
- Given the family of coherent states $\left|\eta_{p, q}\right\rangle$, we apply the linear $\operatorname{map} f \mapsto A_{f}^{\sigma}=\int_{\mathbb{R} \times \mathbb{S}^{1}} \frac{\mathrm{~d} p \mathrm{~d} q}{c_{\eta}} f(p, q)\left|\eta_{p, q}\right\rangle\left\langle\eta_{p, q}\right|$ to classical observables $f(p, q)$.
- For $f(p, q)=u(q)$ with $u(q+2 \pi)=u(q), A_{u}$ is the multiplication operator $\left(A_{u} \psi\right)(\alpha)=\left(E_{\eta ; \gamma} * u\right)(\alpha) \psi(\alpha)$ where $E_{\eta ; \gamma}(\alpha):=\frac{2 \pi}{\kappa c_{\eta}} \frac{|\eta(\alpha)|^{2}}{\sin (\gamma-\alpha)}, \operatorname{supp} E_{\eta ; \gamma} \subset(\gamma-\pi, \gamma)$ is a probability distribution on the interval $[-\pi, \pi]$.
- In particular, for the Fourier exponential $e_{n}(\alpha)=e^{\text {in } \alpha}, n \in \mathbb{Z}$, the above expression is $\left(E_{\eta ; \gamma} * e_{n}\right)(\alpha)=2 \pi c_{n}\left(E_{\eta ; \gamma}\right) e^{\mathrm{i} n \alpha}$.
- For the momentum $f(p, q)=p$,
$\left(A_{p} \psi\right)(\alpha)=\left(-\mathrm{i} \frac{c_{2}(\eta, \gamma)}{\kappa c_{1}(\eta, \gamma)} \frac{\partial}{\partial \alpha}-\lambda a\right) \psi(\alpha)$ for real η.
- Given the family of coherent states $\left|\eta_{p, q}\right\rangle$, we apply the linear $\operatorname{map} f \mapsto A_{f}^{\sigma}=\int_{\mathbb{R} \times \mathbb{S}^{1}} \frac{\mathrm{~d} p \mathrm{~d} q}{c_{\eta}} f(p, q)\left|\eta_{p, q}\right\rangle\left\langle\eta_{p, q}\right|$ to classical observables $f(p, q)$.
- For $f(p, q)=u(q)$ with $u(q+2 \pi)=u(q), A_{u}$ is the multiplication operator $\left(A_{u} \psi\right)(\alpha)=\left(E_{\eta ; \gamma} * u\right)(\alpha) \psi(\alpha)$ where $E_{\eta ; \gamma}(\alpha):=\frac{2 \pi}{\kappa c_{\eta}} \frac{|\eta(\alpha)|^{2}}{\sin (\gamma-\alpha)}, \operatorname{supp} E_{\eta ; \gamma} \subset(\gamma-\pi, \gamma)$ is a probability distribution on the interval $[-\pi, \pi]$.
- In particular, for the Fourier exponential $e_{n}(\alpha)=e^{\mathrm{i} n \alpha}, n \in \mathbb{Z}$, the above expression is $\left(E_{\eta ; \gamma} * e_{n}\right)(\alpha)=2 \pi c_{n}\left(E_{\eta ; \gamma}\right) e^{\mathrm{i} n \alpha}$.
- For the momentum $f(p, q)=p$,

$$
\left(A_{p} \psi\right)(\alpha)=\left(-\mathrm{i} \frac{c_{2}(\eta, \gamma)}{\kappa c_{1}(\eta, \gamma)} \frac{\partial}{\partial \alpha}-\lambda a\right) \psi(\alpha) \text { for real } \eta
$$

- For a general polynomial $f(q, p)=\sum_{k=0}^{N} u_{k}(q) p^{k}$ one gets $\sum_{k=0}^{N} a_{k}(\alpha)\left(-i \partial_{\alpha}\right)^{k}$.
- For the 2π-periodic and discontinuous angle function $a(\alpha)=\alpha$ for $\alpha \in[0,2 \pi)$, we get the multiplication operator $\left(E_{\eta, \gamma} * a\right)(\alpha)=\alpha+2 \pi\left(1-\int_{-\pi}^{\alpha} E_{\eta ; \gamma}(q) \mathrm{d} q\right)-\int_{\gamma-\pi}^{\gamma} q E_{\eta, \gamma}(q) \mathrm{d} q$.
- For the 2π-periodic and discontinuous angle function $a(\alpha)=\alpha$ for $\alpha \in[0,2 \pi)$, we get the multiplication operator $\left(E_{\eta, \gamma} * a\right)(\alpha)=\alpha+2 \pi\left(1-\int_{-\pi}^{\alpha} E_{\eta ; \gamma}(q) \mathrm{d} q\right)-\int_{\gamma-\pi}^{\gamma} q E_{\eta, \gamma}(q) \mathrm{d} q$.
- We choose a specific section with $\lambda=0, \gamma=\pi / 2$ and as fiducial vectors the family $\eta^{(s, \epsilon)}(\alpha)$ of periodic smooth even functions, supp $\eta=[-\epsilon, \epsilon] \bmod 2 \pi$, parametrized by $s>0$ and $0<\epsilon<\pi / 2$,

$$
\eta^{(s, \epsilon)}(\alpha)=\frac{1}{\sqrt{\epsilon e_{2 s}}} \omega_{s}\left(\frac{\alpha}{\epsilon}\right) \quad \text { where } \quad e_{s}:=\int_{-1}^{1} \mathrm{~d} x \omega_{s}(x)
$$

and

$$
\omega_{s}(x)=\left\{\begin{array}{cc}
\exp \left(-\frac{s}{1-x^{2}}\right) & 0 \leq|x|<1 \\
0 & |x| \geq 1
\end{array}\right.
$$

are smooth and compactly supported test functions.

- For the 2π-periodic and discontinuous angle function $a(\alpha)=\alpha$ for $\alpha \in[0,2 \pi)$, we get the multiplication operator $\left(E_{\eta, \gamma} * a\right)(\alpha)=\alpha+2 \pi\left(1-\int_{-\pi}^{\alpha} E_{\eta ; \gamma}(q) \mathrm{d} q\right)-\int_{\gamma-\pi}^{\gamma} q E_{\eta, \gamma}(q) \mathrm{d} q$.
- We choose a specific section with $\lambda=0, \gamma=\pi / 2$ and as fiducial vectors the family $\eta^{(s, \epsilon)}(\alpha)$ of periodic smooth even functions, supp $\eta=[-\epsilon, \epsilon] \bmod 2 \pi$, parametrized by $s>0$ and $0<\epsilon<\pi / 2$,

$$
\eta^{(s, \epsilon)}(\alpha)=\frac{1}{\sqrt{\epsilon e_{2 s}}} \omega_{s}\left(\frac{\alpha}{\epsilon}\right) \quad \text { where } \quad e_{s}:=\int_{-1}^{1} \mathrm{~d} x \omega_{s}(x)
$$

and

$$
\omega_{s}(x)=\left\{\begin{array}{cc}
\exp \left(-\frac{s}{1-x^{2}}\right) & 0 \leq|x|<1 \\
0 & |x| \geq 1
\end{array}\right.
$$

are smooth and compactly supported test functions.

- $\left(\eta^{(s, \epsilon)}\right)^{2}(\alpha) \rightarrow \delta(\alpha) \quad$ as $\quad \epsilon \rightarrow 0 \quad$ or \quad as $\quad s \rightarrow \infty$.

Figure: Plots of $\eta^{(s, \epsilon)}$ for various values of $\tau=\frac{s}{\epsilon^{2}}$.

Figure: Plots of $\left(E_{\eta(s, \epsilon) ; \frac{\pi}{2}} * a\right)(\alpha)$ for various values of $\tau=\frac{s}{\epsilon^{2}}$.

Figure: Plots of the lower symbol $\check{q}(q)$ of the angle operator $A_{\boldsymbol{a}}$ for various values of $\tau=\frac{s}{\epsilon^{2}}$.

Angle-angular momentum: commutation relations and UFABC Heisenberg inequality

- For $\lambda=0$ and $\psi(\alpha) \in L^{2}\left(\mathbb{S}^{1}, \mathrm{~d} \alpha\right)$, we find the non-canonical $\mathrm{CR}\left(\left[A_{p}, A_{a}\right] \psi\right)(\alpha)=-\mathrm{ic}\left(1-2 \pi E_{\eta ; \gamma}(\alpha)\right) \psi(\alpha)$ where $c:=\frac{c_{2}(\eta, \gamma)}{\kappa c_{1}(\eta, \gamma)}$

Angle-angular momentum: commutation relations and UFABC Heisenberg inequality

- For $\lambda=0$ and $\psi(\alpha) \in L^{2}\left(\mathbb{S}^{1}, \mathrm{~d} \alpha\right)$, we find the non-canonical $\mathrm{CR}\left(\left[A_{p}, A_{a}\right] \psi\right)(\alpha)=-\mathrm{ic}\left(1-2 \pi E_{\eta ; \gamma}(\alpha)\right) \psi(\alpha)$ where $c:=\frac{c_{2}(\eta, \gamma)}{\kappa c_{1}(\eta, \gamma)}$
- Since $\lim _{\epsilon \rightarrow 0} \frac{c_{2}\left(\eta^{(s, \epsilon)}, \frac{\pi}{2}\right)}{c_{1}\left(\eta^{(s, \epsilon)}, \frac{\pi}{2}\right)}=1$ and $\lim _{\epsilon \rightarrow 0} E_{\eta ; \gamma}(\alpha)=\delta(\alpha)$, with the choice $\kappa=1$ one has, in the limit $\epsilon \rightarrow 0$, for $\alpha \in[0,2 \pi)$ $\bmod 2 \pi,\left(\left[A_{p}, A_{a}\right] \psi\right)(\alpha)=(-\mathrm{i}+\mathrm{i} 2 \pi \delta(\alpha)) \psi(\alpha)$. Heisenberg inequality
- For $\lambda=0$ and $\psi(\alpha) \in L^{2}\left(\mathbb{S}^{1}, \mathrm{~d} \alpha\right)$, we find the non-canonical $\mathrm{CR}\left(\left[A_{p}, A_{a}\right] \psi\right)(\alpha)=-\mathrm{ic}\left(1-2 \pi E_{\eta ; \gamma}(\alpha)\right) \psi(\alpha)$ where $c:=\frac{c_{2}(\eta, \gamma)}{\kappa c_{1}(\eta, \gamma)}$
- Since $\lim _{\epsilon \rightarrow 0} \frac{c_{2}\left(\eta^{(s, \epsilon)}, \frac{\pi}{2}\right)}{c_{1}\left(\eta^{(s, \epsilon)}, \frac{\pi}{2}\right)}=1$ and $\lim _{\epsilon \rightarrow 0} E_{\eta ; \gamma}(\alpha)=\delta(\alpha)$, with the choice $\kappa=1$ one has, in the limit $\epsilon \rightarrow 0$, for $\alpha \in[0,2 \pi)$ $\bmod 2 \pi,\left(\left[A_{p}, A_{a}\right] \psi\right)(\alpha)=(-\mathrm{i}+\mathrm{i} 2 \pi \delta(\alpha)) \psi(\alpha)$.
- The uncertainty relation for A_{p} and A_{a}, with the coherent states $\eta_{p, q}$, is $\left.\Delta A_{p} \Delta A_{a} \geqslant \frac{1}{2}\left|\left\langle\eta_{p, q}\right|\left[A_{p}, A_{a}\right]\right| \eta_{p, q}\right\rangle \mid$.

Figure: Plots of the dispersions ΔA_{a} and ΔA_{p} with respect to the coherent state $\left|\eta_{\rho, q}^{(s, \epsilon)}\right\rangle$ for various values of $\tau=\frac{s}{\epsilon^{2}}$.

Figure: Plots of the difference L.H.S.-R.H.S. of the uncertainty relation with respect to the coherent state $\left|\eta_{p, q}^{(s, \epsilon)}\right\rangle$ for various values of $\tau=\frac{s}{\epsilon^{2}}$.

- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group $\mathrm{E}(2)$.
- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group $\mathrm{E}(2)$.
- The cylinder $\mathbb{R} \times \mathbb{S}^{1}$ depicts the classical phase space of the motion of a particle on a circle, and is mathematically realized as the left coset $E(2) / H$, where H is a stabilizer subgroup under the coadjoint action of $E(2)$.
- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group $\mathrm{E}(2)$.
- The cylinder $\mathbb{R} \times \mathbb{S}^{1}$ depicts the classical phase space of the motion of a particle on a circle, and is mathematically realized as the left coset $E(2) / H$, where H is a stabilizer subgroup under the coadjoint action of $E(2)$.
- The coherent states for $E(2)$ are constructed from a UIR of $\mathrm{E}(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)$ restricted to an affine section $\mathbb{R} \times \mathbb{S}^{1} \ni(p, q) \mapsto \sigma(p, q) \in \mathrm{E}(2)$.
- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group $\mathrm{E}(2)$.
- The cylinder $\mathbb{R} \times \mathbb{S}^{1}$ depicts the classical phase space of the motion of a particle on a circle, and is mathematically realized as the left coset $E(2) / H$, where H is a stabilizer subgroup under the coadjoint action of $E(2)$.
- The coherent states for $E(2)$ are constructed from a UIR of $\mathrm{E}(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)$ restricted to an affine section $\mathbb{R} \times \mathbb{S}^{1} \ni(p, q) \mapsto \sigma(p, q) \in \mathrm{E}(2)$.
- For functions on the cylindric phase space, the corresponding operators and lower symbols are determined. For periodic functions $f(q)$ of the angular coordinate q, the operators A_{f} are multiplication operators whose spectra are given by periodic functions.
- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group $\mathrm{E}(2)$.
- The cylinder $\mathbb{R} \times \mathbb{S}^{1}$ depicts the classical phase space of the motion of a particle on a circle, and is mathematically realized as the left coset $E(2) / H$, where H is a stabilizer subgroup under the coadjoint action of $E(2)$.
- The coherent states for $E(2)$ are constructed from a UIR of $\mathrm{E}(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)$ restricted to an affine section $\mathbb{R} \times \mathbb{S}^{1} \ni(p, q) \mapsto \sigma(p, q) \in \mathrm{E}(2)$.
- For functions on the cylindric phase space, the corresponding operators and lower symbols are determined. For periodic functions $f(q)$ of the angular coordinate q, the operators A_{f} are multiplication operators whose spectra are given by periodic functions.
- The angle function $\boldsymbol{a}(\alpha)=\alpha$ is mapped to a SA multiplication angle operator A_{a} with continuous spectrum.
- We have presented a picture of a quantisation based on the resolution of the identity provided by coherent states for the special Euclidean group $\mathrm{E}(2)$.
- The cylinder $\mathbb{R} \times \mathbb{S}^{1}$ depicts the classical phase space of the motion of a particle on a circle, and is mathematically realized as the left coset $E(2) / H$, where H is a stabilizer subgroup under the coadjoint action of $E(2)$.
- The coherent states for $E(2)$ are constructed from a UIR of $\mathrm{E}(2)=\mathbb{R}^{2} \rtimes \mathrm{SO}(2)$ restricted to an affine section $\mathbb{R} \times \mathbb{S}^{1} \ni(p, q) \mapsto \sigma(p, q) \in \mathrm{E}(2)$.
- For functions on the cylindric phase space, the corresponding operators and lower symbols are determined. For periodic functions $f(q)$ of the angular coordinate q, the operators A_{f} are multiplication operators whose spectra are given by periodic functions.
- The angle function $\boldsymbol{a}(\alpha)=\alpha$ is mapped to a SA multiplication angle operator A_{a} with continuous spectrum.
- For a particular family of coherent states, it is shown that the spectrum is $[\pi-m(s, \epsilon), \pi+m(s, \epsilon)]$, where $m(s, \epsilon) \rightarrow \pi$ as $\epsilon \rightarrow 0$ or $s \rightarrow \infty$.

Figure: UFABC Campus in Santo André, São Paulo

