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1. The nine two-dimensional Cayley–Klein geometries

The motion groups of the nine 2D Cayley–Klein (CK) geometries can be described in
a unified setting by means of two real coefficients κ1, κ2 and are collectively denoted
SOκ1,κ2(3).

The generators {P1, P2, J12} of the corresponding Lie algebras soκ1,κ2(3) have Lie
commutators:

[J12, P1] = P2 [J12, P2] = −κ2P1 [P1, P2] = κ1J12.

There is a single Lie algebra Casimir:

C = P 2
2 + κ2P

2
1 + κ1J

2
12.

The CK algebras soκ1,κ2(3) can be endowed with a Z2 ⊗ Z2 group of commuting
automorphisms generated by:

Π(1) : (P1, P2, J12)→ (−P1,−P2, J12)
Π(2) : (P1, P2, J12)→ (P1,−P2,−J12).

The two remaining involutions are the composition Π(02) = Π(1) · Π(2) and the iden-
tity.
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Each involution Π determines a subalgebra of soκ1,κ2(3) whose elements are invariant
under Π leading to the following Cartan decompositions:

soκ1,κ2(3) = h(1) ⊕ p(1), h(1) = 〈J12〉 = soκ2(2), p(1) = 〈P1, P2〉.

soκ1,κ2(3) = h(2) ⊕ p(2), h(2) = 〈P1〉 = soκ1(2), p(2) = 〈P2, J12〉.
soκ1,κ2(3) = h(02) ⊕ p(02), h(02) = 〈P2〉 = soκ1κ2(2), p(02) = 〈P1, J12〉.

The elements defining a 2D CK geometry are

• The plane as the set of points corresponds to the 2D symmetrical homogeneous
space

S2
[κ1],κ2

≡ SOκ1,κ2(3)/H(1) ≡ SOκ1,κ2(3)/SOκ2(2) H(1) = 〈J12〉 ≈ SOκ2(2).

The generator J12 leaves a pointO (the origin) invariant, thus J12 acts as the rotation
around O. The involution Π(1) is the reflection around the origin. In this space P1

and P2 generate translations which move the origin point in two basic directions.
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• The set of lines is identified as the 2D symmetrical homogeneous space

S2
κ1,[κ2] ≡ SOκ1,κ2(3)/H(2) ≡ SOκ1,κ2(3)/SOκ1(2) H(2) = 〈P1〉 ≈ SOκ1(2).

In this space, the generator P1 leaves invariant the ‘origin’ line l1, which is moved
in two basic directions by J12 and P2. Therefore, within S2

κ1,[κ2], P1 should be inter-
preted as the generator of ‘rotations’ around l1.

• There is a second set of lines corresponding to the 2D symmetrical homogeneous
space

SOκ1,κ2(3)/H(02) ≡ SOκ1,κ2(3)/SOκ1κ2(2) H(02) = 〈P2〉 ≈ SOκ1κ2(2).

In this case, P2 leaves invariant an ‘origin’ line l2 in this space while J12 and P1 do
move l2.

By a two-dimensional CK geometry we will understand the set of three symmetri-
cal homogeneous spaces of points, lines of first-kind and lines of second-kind. The
group SOκ1,κ2(3) acts transitively on each of these spaces.
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The coefficients κ1, κ2 play a twofold role.

The space S2
[κ1],κ2

has a quadratic metric coming from the Casimir, whose signature
corresponds to the matrix diag(1, κ2). This metric is riemannian (definite positive)
for κ2 > 0, lorentzian (indefinite) for κ2 < 0 and degenerate for κ2 = 0. This space
has a canonical conexion which is compatible with the metric, and has constant
curvature equal to κ1.

In the notations S2
[κ1],κ2

, S2
κ1,[κ2] for the spaces, the κi in square brackets is the constant

curvature, and the remaining constant determines the signature. Alternatively, the
coefficients κ1, κ2 determine the kind of measures of separation amongst points
and lines in the Klein sense:

• The pencil of points on a first-kind line is elliptical/parabolical/hyperbolical ac-
cording to whether κ1 is greater than/equal to/lesser than zero.

• Likewise for the pencil of points on a second-kind line depending on the product
κ1κ2.

• Likewise for the pencil of lines through a point according to κ2.
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For κ1 positive/zero/negative the isotropy subgroup H(2) is SO(2)/R/SO(1, 1),
and the same happens for H(1) (resp. H(02)) according to the value of κ2 (resp.
κ1κ2 ≡ κ02).

Whenever the coefficient κ1 (resp. κ2) is different from zero, a suitable choice of
length unit (resp. angle unit) allows us to reduce it to either +1 or −1. Hence we
obtain nine 2D real CK geometries.

There exists an ‘automorphism’ of the whole family, called ordinary duality D,
which is given by:

D : (P1, P2, J12)→ (−J12,−P2,−P1) D : (κ1, κ2)→ (κ2, κ1).

The map D leaves the commutation rules invariant while it interchanges the space
of points with the space of first-kind lines, S2

[κ1],κ2
↔ S2

κ1,[κ2], and the corresponding
curvatures κ1 ↔ κ2, preserving the space of second-kind lines.

The vanishment of a coefficient κi corresponds to an Inönü–Wigner contraction.
The limit κ1 → 0 is a local-contraction (around a point), while the limit κ2 → 0 is
an axial-contraction (around a line).
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Measure of distance
Measure Elliptic Parabolic Hyperbolic
of angle κ1 = 1 κ1 = 0 κ1 = −1

Elliptic Euclidean Hyperbolic
SO(3) ISO(2) SO(2, 1)

Elliptic [J12, P1] = P2 [J12, P1] = P2 [J12, P1] = P2

κ2 = 1 [J12, P2] = −P1 [J12, P2] = −P1 [J12, P2] = −P1

[P1, P2] = J12 [P1, P2] = 0 [P1, P2] = −J12
C = P 2

2 + P 2
1 + J2

12 C = P 2
2 + P 2

1 C = P 2
2 + P 2

1 − J2
12

H(1) = SO(2) H(1) = SO(2) H(1) = SO(2)
H(2) = SO(2) H(2) = R H(2) = SO(1, 1)
H(02) = SO(2) H(02) = R H(02) = SO(1, 1)
Co-Euclidean Galilean Co-Minkowskian
Oscillating NH Expanding NH
ISO(2) IISO(1) ISO(1, 1)

Parabolic [J12, P1] = P2 [J12, P1] = P2 [J12, P1] = P2

κ2 = 0 [J12, P2] = 0 [J12, P2] = 0 [J12, P2] = 0
[P1, P2] = J12 [P1, P2] = 0 [P1, P2] = −J12
C = P 2

2 + J2
12 C = P 2

2 C = P 2
2 − J2

12

H(1) = R H(1) = R H(1) = R
H(2) = SO(2) H(2) = R H(2) = SO(1, 1)
H(02) = R H(02) = R H(02) = R
Co-Hyperbolic Minkowskian Doubly Hyperbolic
Anti-de Sitter De Sitter
SO(2, 1) ISO(1, 1) SO(2, 1)

Hyperbolic [J12, P1] = P2 [J12, P1] = P2 [J12, P1] = P2

κ2 = −1 [J12, P2] = P1 [J12, P2] = P1 [J12, P2] = P1

[P1, P2] = J12 [P1, P2] = 0 [P1, P2] = −J12
C = P 2

2 − P 2
1 + J2

12 C = P 2
2 − P 2

1 C = P 2
2 − P 2

1 − J2
12

H(1) = SO(1, 1) H(1) = SO(1, 1) H(1) = SO(1, 1)
H(2) = SO(2) H(2) = R H(2) = SO(1, 1)
H(02) = SO(1, 1) H(02) = R H(02) = SO(2)
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1.1. Spacetimes as Cayley–Klein spaces

Let H, P and K be the generators of time translations, space translations and
boosts, respectively, in the most simple (1 + 1)D homogeneous spacetime. Under
the identification

P1 ≡ H P2 ≡ P J12 ≡ K
the six CK groups with κ2 ≤ 0 (second and third rows of table ; NH means Newton–
Hooke) are the motion groups of (1 + 1)D spacetimes:

• S2
[κ1],κ2

is a (1 + 1)D spacetime, and points in S2
[κ1],κ2

are spacetime events; the
spacetime curvature equals κ1 and is related to the usual universe (time) radius τ by
κ1 = ±1/τ 2.

• The space of first-kind lines S2
κ1,[κ2] corresponds to the space of time-like lines. The

coefficient κ2 is the curvature of the space of time-like lines, linked to the relativistic
constant c as κ2 = −1/c2. Relativistic spacetimes occur for κ2 < 0 (the signature of
the metric is diag(1,−1/c2)) and their non-relativistic limits correspond to κ2 = 0.

• The space of second-kind lines SOκ1,κ2(3)/H(02) is the 2D space of space-like
lines.
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1.2. Matrix realization and vector model

The following 3D real matrix representation of the CK algebra soκ1,κ2(3):

P1 =

 0 −κ1 0
1 0 0
0 0 0

 P2 =

 0 0 −κ1κ2

0 0 0
1 0 0

 J12 =

 0 0 0
0 0 −κ2

0 1 0


gives rise to a natural realization of the CK group SOκ1,κ2(3) as a group of linear
transformations in an ambient linear space R3 = (x0, x1, x2) in which SOκ1,κ2(3)
acts as the group of linear isometries of a bilinear form with matrix:

Λ = diag (1, κ1, κ1κ2).

Their exponential leads to a representation of the one-parametric subgroups H(2),
H(02) and H(1) generated by P1, P2 and J12 as:

exp(αP1) =

 Cκ1(α) −κ1Sκ1(α) 0
Sκ1(α) Cκ1(α) 0

0 0 1

 , exp(γJ12) =

 1 0 0
0 Cκ2(γ) −κ2Sκ2(γ)
0 Sκ2(γ) Cκ2(γ)


exp(βP2) =

 Cκ1κ2(β) 0 −κ1κ2Sκ1κ2(β)
0 1 0

Sκ1κ2(β) 0 Cκ1κ2(β)


10



where the generalized cosine Cκ(x) and sine Sκ(x) functions are defined by

Cκ(x) :=
∞∑
l=0

(−κ)l
x2l

(2l)!
=


cos
√
κx κ > 0

1 κ = 0
cosh

√
−κx κ < 0

Sκ(x) :=
∞∑
l=0

(−κ)l
x2l+1

(2l + 1)!
=


1√
κ

sin
√
κx κ > 0

x κ = 0
1√
−κ sinh

√
−κx κ < 0

.

Two other useful functions are the ‘versed sine’ Vκ(x) and the tangent Tκ(x):

Vκ(x) :=
1

κ
(1− Cκ(x)) Tκ(x) :=

Sκ(x)

Cκ(x)
.

These curvature-dependent trigonometric functions coincide with the usual circular
and hyperbolic ones for κ = 1 and κ = −1, respectively; the case κ = 0 provides
the parabolic or Galilean functions:

C0(x) = 1, S0(x) = x, V0(x) = x2/2.
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The CK group SOκ1,κ2(3) can be seen as a group of linear transformations in an
ambient space R3 = (x0, x1, x2), acting as the group of isometries of a bilinear form

Λ = diag(1, κ1, κ1κ2).

An element X ∈ SOκ1,κ2(3) satisfies

XT ΛX = Λ.

The action of SOκ1,κ2(3) on R3 is linear but not transitive, since it conserves the
quadratic form

(x0)2 + κ1(x
1)2 + κ1κ2(x

2)2.

The action becomes transitive if we restrict to the orbit in R3 of the point O, which
is contained in the ‘sphere’ Σ:

Σ ≡ (x0)2 + κ1(x
1)2 + κ1κ2(x

2)2 = 1.

This orbit is identified with the CK space S2
[κ1],κ2

, and (x0, x1, x2) are called Weier-
strass coordinates; these allow us to obtain a differential realization of the genera-
tors as first-order vector fields in R3 with ∂i = ∂/∂xi:

P1 = κ1x
1∂0 − x0∂1 P2 = κ1κ2x

2∂0 − x0∂2 J12 = κ2x
2∂1 − x1∂2.
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2. Metric structure and coordinate systems of the 2D CK spaces of
points

Hereafter we consider the homogeneous space of points

S2
[κ1],κ2

≡ SOκ1,κ2(3)/H(1) ≡ SOκ1,κ2(3)/SOκ2(2) H(1) = 〈J12〉 ≈ SOκ2(2).

Table 1: The nine two-dimensional CK spaces S2
[κ1],κ2

= SOκ1,κ2(3)/SOκ2(2).

Elliptic: S2 Euclidean: E2 Hyperbolic: H2

S2
[+],+ = SO(3)/SO(2) S2

[0],+ = ISO(2)/SO(2) S2
[−],+ = SO(2, 1)/SO(2)

Oscillating NH: NH1+1
+ Galilean: G1+1 Expanding NH: NH1+1

−
(Co-Euclidean) (Co-Minkowskian)
S2
[+],0 = ISO(2)/ISO(1) S2

[0],0 = IISO(1)/ISO(1) S2
[−],0 = ISO(1, 1)/ISO(1)

Anti-de Sitter: AdS1+1 Minkowskian: M1+1 De Sitter: dS1+1

(Co-Hyperbolic) (Doubly Hyperbolic)
S2
[+],− = SO(2, 1)/SO(1, 1) S2

[0],− = ISO(1, 1)/SO(1, 1) S2
[−],− = SO(2, 1)/SO(1, 1)
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If both coefficients κi are different from zero, SOκ1,κ2(3) is a simple Lie group, and
the space S2

[κ1],κ2
is endowed with a non-degenerate metric g0 coming from the

non-singular Killing–Cartan form in the Lie algebra soκ1,κ2(3).

At the origin, g0 is given by:

g0(P1, P1) = −2κ1 g0(P2, P2) = −2κ1κ2 g0(P1, P2) = 0.

To cover the cases with κ1 = 0 where g0 vanishes identically, we take out a factor
−2κ1 out of g0, and introduce the space main metric g1 as

−2g1 := g0/κ1.

If κ2 = 0, g1 is a degenerate metric and the action of SOκ1,0(3) on S2
[κ1],0 has an

invariant foliation. The restriction of g1 to each foliation leaf vanishes, but

g2 =
1

κ2
g1

has a non-vanishing and well defined restriction to each leaf; we call g2 the sub-
sidiary metric.
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Proposition. The metric structure for a generic space S2
[κ1],κ2

is characterized by:

• A connection∇ which is invariant under SOκ1,κ2(3).

• A hierarchy of two metrics g1 and g2 = 1
κ2
g1 compatible with ∇. The action of

SOκ1,κ2(3) on S2
[κ1],κ2

is by isometries of both metrics.

• The main metric g1 is actually a metric in the true sense and has constant curvature
κ1 and signature diag(+, κ2).

• If κ2 6= 0, g2 is a true metric proportional to g1. If κ2 = 0, the subsidiary metric g2

gives a true metric only in each leaf of the invariant foliation in S2
[κ1],0, whose set of

leaves can be parametrized by (x0)2 + κ1(x
1)2 = 1 ≡ S1

[κ1]; g2 has signature (+).

In terms of Weierstrass coordinates in the linear ambient space R3, the two metrics
in S2

[κ1],κ2
come from the flat ambient metric

ds2 = (dx0)2 + κ1(dx
1)2 + κ1κ2(dx

2)2

in the form
(ds2)1 =

1

κ1
ds2 (ds2)2 =

1

κ2
(ds2)1.

We introduce three coordinate systems of geodesic type.
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Let us consider the origin O ≡ (1, 0, 0), two (oriented) geodesics l1, l2 which are
orthogonal through the origin, and a generic point Q with Weierstrass coordinates
x = (x0, x1, x2). We have:

• If x = exp(aP1) exp(yP2)O, we call (a, y) the type I geodesic parallel coordi-
nates of Q.

• If x = exp(bP2) exp(xP1)O, we call (x, b) the type II geodesic parallel coordi-
nates of Q.

• The geodesic polar coordinates of the pointQ are (r, φ) if x = exp(φJ12) exp(rP1)O.

rφ

y

a

x

r

�
�
�
�
�
�
�
�
�
�
�
�r

Q1

Q

l′1

l

r
O

b

rQ2

l2 6

-

l1

l′2

We compute the Weierstrass coordinates x of a generic point Q in the three geodesic
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• •

•

•
•

•

•
•

•

•

x0

x1

x2

O

O1

O2

l′2
y

r2
Q

x

r1

l′1

Q2

Q1

l2
l1 φ

l r

x0

x1

x2

l

Ql1 l2

l′2

O

Q2

Q1

r
φ

x
l′1

y

S2 H2

(a) (b)

coordinate systems.

By substitution in the expressions of the metrics in Weierstrass coordinates we find
the main and subsidiary metrics in either geodesic coordinates.

From them we may compute the conexion symbols Γijk.

The area element dS in coordinates say u1, u2 is
√

det g1/κ2 du1 ∧ du2.
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Table 2: Weierstrass coordinates, metric, canonical connection and area element for S2
[κ1],κ2

given in
the three geodesic coordinate systems.

Parallel I (a, y) Parallel II (x, b) Polar (r, φ)

x0 = Cκ1
(a)Cκ1κ2

(y) x0 = Cκ1
(x)Cκ1κ2

(b) x0 = Cκ1
(r)

x1 = Sκ1
(a)Cκ1κ2

(y) x1 = Sκ1
(x) x1 = Sκ1

(r)Cκ2
(φ)

x2 = Sκ1κ2
(y) x2 = Cκ1

(x)Sκ1κ2
(b) x2 = Sκ1

(r)Sκ2
(φ)

(ds2)1 = C2
κ1κ2

(y)da2 + κ2 dy2 (ds2)1 = dx2 + κ2C
2
κ1

(x)db2 (ds2)1 = dr2 + κ2S
2
κ1

(r)dφ2

(ds2)2 = dy2 for a = a0 (ds2)2 = C2
κ1

(x)db2 for x = x0 (ds2)2 = S2
κ1

(r)dφ2 for r = r0

Γyaa = κ1Sκ1κ2(y)Cκ1κ2(y) Γxbb = κ1κ2Sκ1(x)Cκ1(x) Γrφφ = −κ2Sκ1(r)Cκ1(r)

Γaay = −κ1κ2Tκ1κ2(y) Γbbx = −κ1Tκ1(x) Γφφr = 1/Tκ1(r)

dS = Cκ1κ2
(y) da ∧ dy dS = Cκ1

(x) dx ∧ db dS = Sκ1
(r) dr ∧ dφ
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S2 = S2
[+],+ E2 = S2

[0],+ H2 = S2
[−],+

x0 = cos a cos y x0 = 1 x0 = cosh a cosh y
x1 = sin a cos y x1 = a x1 = sinh a cosh y
x2 = sin y x2 = y x2 = sinh y

(ds2)1 = cos2 y da2 + dy2 (ds2)1 = da2 + dy2 (ds2)1 = cosh2 y da2 + dy2

Γyaa = sin y cos y Γyaa = 0 Γyaa = − sinh y cosh y

Γaay = − tan y Γaay = 0 Γaay = tanh y

dS = cos y da ∧ dy dS = da ∧ dy dS = cosh y da ∧ dy

NH1+1
+ = S2

[+1/τ2],0 G1+1 = S2
[0],0 NH1+1

− = S2
[−1/τ2],0

x0 = cos(t/τ) x0 = 1 x0 = cosh(t/τ)
x1 = τ sin(t/τ) x1 = t x1 = τ sinh(t/τ)
x2 = y x2 = y x2 = y

(ds2)1 = dt2 (ds2)1 = dt2 (ds2)1 = dt2

(ds2)2 = dy2 t = t0 (ds2)2 = dy2 t = t0 (ds2)2 = dy2 t = t0

Γytt = 1
τ2 y Γtty = 0 Γytt = 0 Γtty = 0 Γytt = − 1

τ2 y Γtty = 0

dS = dt ∧ dy dS = dt ∧ dy dS = dt ∧ dy

AdS1+1 = S2
[+1/τ2],−1/c2 M1+1 = S2

[0],−1/c2 dS1+1 = S2
[−1/τ2],−1/c2

x0 = cos(t/τ) cosh(y/cτ) x0 = 1 x0 = cosh(t/τ) cos(y/cτ)
x1 = τ sin(t/τ) cosh(y/cτ) x1 = t x1 = τ sinh(t/τ) cos(y/cτ)
x2 = cτ sinh(y/cτ) x2 = y x2 = cτ sin(y/cτ)

(ds2)1 = cosh2(y/cτ)dt2 − 1
c2 dy2 (ds2)1 = dt2 − 1

c2 dy2 (ds2)1 = cos2(y/cτ)dt2 − 1
c2 dy2

Γytt = c
τ sinh(y/cτ) cosh(y/cτ) Γytt = 0 Γytt = − c

τ sin(y/cτ) cos(y/cτ)

Γtty = 1
cτ tanh(y/cτ) Γtty = 0 Γtty = − 1

cτ tan(y/cτ)

dS = cosh(y/cτ) dt ∧ dy dS = dt ∧ dy dS = cos(y/cτ) dt ∧ dy19



2.1. Vector fields

The differential realization of the generators as first-order vector fields in R3

P1 = κ1x
1∂0 − x0∂1 P2 = κ1κ2x

2∂0 − x0∂2 J12 = κ2x
2∂1 − x1∂2.

Geodesic parallel I coordinates (a, y)

P1 = −∂a P2 = −κ1κ2Sκ1(a)Tκ1κ2(y) ∂a − Cκ1(a) ∂y

J12 = κ2Cκ1(a)Tκ1κ2(y) ∂a − Sκ1(a) ∂y

Geodesic parallel II coordinates (x, b)

P1 = −Cκ1κ2(b) ∂x − κ1Tκ1(x)Sκ1κ2(b) ∂b P2 = −∂b
J12 = κ2Sκ1κ2(b) ∂x − Tκ1(x)Cκ1κ2(b) ∂b

Geodesic polar coordinates (r, φ)

P1 = −Cκ2(φ) ∂r +
Sκ2(φ)

Tκ1(r)
∂φ P2 = −κ2Sκ2(φ) ∂r −

Cκ2(φ)

Tκ1(r)
∂φ

J12 = −∂φ
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These vectors fields satisfy the Killing equations for the metrics g1, g2 of the space
S2

[κ1],κ2
, that is, LXgi = µX gi = 0, where LXgi is the Lie derivative of gi.

Therefore we find an application to Lie systems.

2.2. Laplace/wave-type equations

Let us consider a 2D space with coordinates (u1, u2), a differential operator E =
E(u1, u2, ∂1, ∂2) acting on functions Φ(u1, u2) defined on the space (∂i ≡ ∂/∂ui),
and consider the differential equation:

EΦ(u1, u2) = 0.

An operator O is a symmetry if O transforms solutions into solutions:

EO = QE or [E,O] = Q′E

where Q is another operator and Q′ = Q−O.

We consider the differential equation obtained by taking as E the Casimir C of the
CK algebra soκ1,κ2(3) in the space S2

[κ1],κ2
: CΦ = 0.
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Recall that

C = P 2
2 + κ2P

2
1 + κ1J

2
12, [C, X] = 0, X ∈ {P1, P2, J12}.

In the three geodesic coordinate systems, such an equation turns out to be(
κ2

C2
κ1κ2

(y)
∂2
a + ∂2

y − κ1κ2Tκ1κ2(y) ∂y

)
Φ(a, y) = 0(

κ2∂
2
x − κ1κ2Tκ1(x) ∂x +

1

C2
κ1

(x)
∂2
b

)
Φ(x, b) = 0(

κ2 ∂
2
r +

κ2

Tκ1(r)
∂r +

1

S2
κ1

(r)
∂2
φ

)
Φ(r, φ) = 0.

22



Table 3: The Laplace–Beltrami operator C giving rise to differential Laplace and wave-type equations
CΦ = 0 in geodesic parallel I Φ(a, y) ≡ Φ(t, y) and polar Φ(r, φ) ≡ Φ(r, χ) coordinates for the nine
CK spaces (when κ2 < 0 the angle is denoted as χ and is a rapidity in the kinematical interpretation).

so(3) : S2 = S2
[+],+ iso(2) : E2 = S2

[0],+ so(2, 1) : H2 = S2
[−],+

1

cos2 y
∂2a + ∂2y − tan y ∂y ∂2a + ∂2y

1

cosh2 y
∂2a + ∂2y + tanh y ∂y

1

sin2 r
∂2φ + ∂2r +

1

tan r
∂r

1

r2
∂2φ + ∂2r +

1

r
∂r

1

sinh2 r
∂2φ + ∂2r +

1

tanh r
∂r

iso(2) : NH1+1
+ = S2

[+1/τ2],0 iiso(1) : G1+1 = S2
[0],0 iso(1, 1) : NH1+1

− = S2
[−1/τ2],0

∂2y ∂2y ∂2y
1

τ2 sin2(r/τ)
∂2χ

1

r2
∂2χ

1

τ2 sinh2(r/τ)
∂2χ

so(2, 1) : AdS1+1 = S2
[+1/τ2],−1/c2 iso(1, 1) : M1+1 = S2

[0],−1/c2 so(2, 1) : dS1+1 = S2
[−1/τ2],−1/c2

−1

c2 cosh2(y/cτ)
∂2t + ∂2y +

tanh(y/cτ)

cτ
∂y − 1

c2
∂2t + ∂2y

−1

c2 cos2(y/cτ)
∂2t + ∂2y −

tan(y/cτ)

cτ
∂y

1

τ2 sin2(r/τ)
∂2χ −

1

c2
∂2r −

1

c2τ tan(r/τ)
∂r

1

r2
∂2χ −

1

c2
∂2r −

1

c2r
∂r

1

τ2 sinh2(r/τ)
∂2χ −

1

c2
∂2r −

1

c2τ tanh(r/τ)
∂r
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• The usual 2D Laplace equation in E2 and the corresponding non-zero curvature
Laplace–Beltrami versions in the sphere and hyperbolic plane.

• An equation which does not involve time in the three non-relativistic spacetimes
(indeed reducing to a 1D ‘Laplace’ equation). This agrees with the known absence of
a true Galilean invariant wave equation and is the main reason precluding a further
development of non-relativistic electromagnetic theories, where only two separate
electric and magnetic essentially static limits are allowed.

• The proper (1 + 1)D wave equation is associated to M1+1; its curvature versions
correspond to anti-de Sitter and de Sitter electromagnetisms in both AdS1+1 and
dS1+1.
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3. Conformal symmetries

It is possible to enlarge the CK algebra by considering:

- A dilation generator D.

- Two specific conformal transformations G1, G2.

Procedure: by imposing cycle-preserving transformations.

Geodesic parallel I coordinates (a, y)

P1 = −∂a P2 = −κ1κ2Sκ1(a)Tκ1κ2(y) ∂a − Cκ1(a) ∂y

J12 = κ2Cκ1(a)Tκ1κ2(y) ∂a − Sκ1(a) ∂y D = − Sκ1(a)

Cκ1κ2(y)
∂a − Cκ1(a)Sκ1κ2(y) ∂y

G1 =
1

Cκ1κ2(y)
(Vκ1(a)− κ2Vκ1κ2(y)) ∂a + Sκ1(a)Sκ1κ2(y) ∂y

G2 = κ2Sκ1(a)Tκ1κ2(y) ∂a − (Vκ1(a)− κ2Vκ1κ2(y)) ∂y
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The commutation rules and Casimirs of confκ1,κ2 read

[J12, P1] = P2 [J12, P2] = −κ2P1 [P1, P2] = κ1J12

[J12, G1] = G2 [J12, G2] = −κ2G1 [G1, G2] = 0
[D,Pi] = Pi + κ1Gi [D,Gi] = −Gi [D, J12] = 0
[P1, G1] = D [P2, G2] = κ2D

[P1, G2] = −J12 [P2, G1] = J12

C1 = −J2
12 + κ2D

2 + κ2(P1G1 +G1P1) + (P2G2 +G2P2) + κ1(κ2G
2
1 +G2

2)
C2 = J12D + (G1P2 − P1G2)

All spaces in the family S2
[κ1],κ2

with the same κ2 have isomorphic conformal alge-
bras. These are:

• so(3, 1) ((2 + 1)D de Sitter algebra) as the conformal algebra of the three 2D
Riemannian spaces with κ2 > 0.

• iso(2, 1) ((2 + 1)D Poincaré) for the (1 + 1)D non-relativistic spacetimes with
κ2 = 0.

• so(2, 2) ((2 + 1)D anti-de Sitter) for the (1 + 1)D relativistic spacetimes with
κ2 < 0.
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In relation with the usual approach to conformal groups by solving the conformal
Killing equations we state the following:

Proposition. All the conformal vectors fields X satisfy the conformal Killing equa-
tions for the metrics g1, g2 of the space S2

[κ1],κ2
, that is, LXgi = µX gi, where LXgi

is the Lie derivative of gi. In Weierstrass coordinates the conformal factors µX are
given by

µP1
= µP2

= µJ12 = 0 µD = −2x0 µG1
= 2x1 µG2

= 2κ2x
2.

Hence the conformal vector fields of the CK spaces would allow one the construction
of new Lie systems.
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4. N-dimensional CK spaces

4.1. Orthogonal CK algebras

Let us consider the real Lie algebra so(N + 1) whose 1
2N(N + 1) generators Jab

(a, b = 0, 1, . . . , N , a < b) satisfy the non-vanishing Lie brackets given by

[Jab, Jac] = Jbc, [Jab, Jbc] = −Jac, [Jac, Jbc] = Jab, a < b < c.

A grading group Z⊗N2 of so(N + 1) is spanned by the following N commuting
involutive automorphisms Θ(m) (m = 1, . . . , N):

Θ(m)(Jab) =

{
Jab, if either m ≤ a or b < m;
−Jab, if a < m ≤ b.

A large family of contracted real Lie algebras can be obtained from so(N + 1); this
depends on 2N − 1 real contraction parameters which includes from the simple
pseudo-orthogonal algebras so(p, q) (the Bl and Dl Cartan series) (when all the con-
traction parameters are different from zero) up to the Abelian algebra at the opposite
case (when all the parameters are equal to zero).
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Properties associated with the simplicity of the algebra are lost at some point beyond
the simple algebras in the contraction sequence.

There exists a particular subset of contrated Lie algebras which are “close to” to
the simple ones, whose members are called CK or quasi-simple orthogonal algebras:
all the CK algebras share, in any dimension, the same rank defined as the number of
(functionally independent) Casimir invariants.

This orthogonal CK family, here denoted soκ(N + 1), depends on N real contrac-
tion coefficients κ = (κ1, . . . , κN):

[Jab, Jac] = κabJbc, [Jab, Jbc] = −Jac, [Jac, Jbc] = κbcJab, a < b < c,

without sum over repeated indices and where the two-index coefficients κab are ex-
pressed in terms of the N basic ones through

κab = κa+1κa+2 · · ·κb, a, b = 0, 1, . . . , N, a < b.

Each non-zero real coefficient κm can be reduced to either +1 or −1 by a rescaling
of the Lie generators.

There are 3N CK algebras.
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The case κm = 0 can be interpreted as an Inönü–Wigner contraction, with param-
eter εm → 0, and defined by the map

Γ(m)(Jab) =

{
Jab, if either m ≤ a or b < m;

εmJab, if a < m ≤ b.

Each involution Θ(m) provides a Cartan decomposition as a direct sum of anti-
invariant and invariant subspaces, denoted p(m) and h(m), respectively:

soκ(N + 1) = p(m) ⊕ h(m),

with the linear sum referring to the linear structure; Lie commutators fulfil:

[h(m), h(m)] ⊂ h(m), [h(m), p(m)] ⊂ p(m), [p(m), p(m)] ⊂ h(m),

and thus h(m) is always a Lie subalgebra with a direct sum structure:

h(m) = soκ1,...,κm−1(m)⊕ soκm+1,...,κN (N + 1−m),

while the vector subspace p(m) is generally not a subalgebra.
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The Cartan decomposition can be visualized in array form as follows:

J01 J02 . . . J0m−1 J0m J0m+1 . . . J0N

J12 . . . J1m−1 J1m J1m+1 . . . J1N
. . . ... ... ... ...

Jm−2m−1 Jm−2m Jm−2m+1 . . . Jm−2N

Jm−1m Jm−1m+1 . . . Jm−1N

Jmm+1 . . . JmN
. . . ...

JN−1N

The subspace p(m) is spanned by the m(N + 1−m) generators inside the rectangle;
the left and down triangles correspond, in this order, to the subalgebras soκ1,...,κm−1(m)
and soκm+1,...,κN (N + 1−m) of h(m).
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• When all κa 6= 0 ∀a, soκ(N + 1) is a (pseudo-)orthogonal algebra so(p, q)
(p + q = N + 1) and (p, q) are the number of positive and negative terms in the
invariant quadratic form with matrix (1, κ01, κ02, . . . , κ0N).

•When κ1 = 0 we recover the inhomogeneous algebras with semidirect sum struc-
ture

so0,κ2,...,κN (N + 1) ≡ tN � soκ2,...,κN (N) ≡ iso(p, q), p+ q = N,

where the Abelian subalgebra tN is spanned by 〈J0b; b = 1, . . . , N〉 and soκ2,...,κN (N)
preserves the quadratic form with matrix diag(+, κ12, . . . , κ1N).

• When κ1 = κ2 = 0 we get a “twice-inhomogeneous” pseudo-orthogonal alge-
bra

so0,0,κ3,...,κN (N+1) ≡ tN�(tN−1 � soκ3,...,κN (N − 1)) ≡ iiso(p, q), p+q = N−1,

where the metric of the subalgebra soκ3,...,κN (N − 1) is (1, κ23, κ24, . . . , κ2N).

•When κa = 0, a /∈ {1, N}, these contracted algebras can be described as

ta(N+1−a)�(soκ1,...,κa−1(p, q)⊕soκa+1,...,κN (p′, q′)), p+q = a, p′+q′ = N+1−a.

• The fully contracted case in the CK family corresponds to setting all κa = 0. This
is the so called flag algebra so0,...,0(N + 1) ≡ i . . . iso(1) such that iso(1) ≡ R.
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4.2. Symmetrical homogeneous CK spaces

If we now consider the CK group SOκ(N + 1) with Lie algebra soκ(N + 1) we find
that each Lie subalgebra h(m) generates a subgroupH(m) leading to the homogeneous
coset space denoted by:

S(m) ≡ SOκ(N + 1)
/(
SOκ1,...,κm−1(m)⊗ SOκm+1,...,κN (N + 1−m)

)
.

The dimension of S(m) is that of p(m):

dim(S(m)) = m(N + 1−m).

Then S(m) is a symmetrical homogeneous space and there are N such symmetrical
homogeneous spaces S(m) (m = 1, . . . , N) for each CK group SOκ(N + 1).

We define the rank of the CK space S(m) as the number of independent invariants
under the action of the CK group for each generic pair of elements in S(m):

rank(S(m)) = min(m,N + 1−m).

The sectional curvature of S(m) turns out to be constant and equal to κm.
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Table 4: Isotopy subgroup, sectional curvature, dimension and rank of the set of N symmetrical
homogeneous spaces S(m) ≡ SOκ(N + 1)/H(m).

Isotopy subgroup Curv. Dimension Rank

H(1) = SOκ2,...,κN (N) κ1 N 1
H(2) = SOκ1(2)⊗ SOκ3,...,κN (N − 1) κ2 2(N − 1) 2
H(3) = SOκ1,κ2(3)⊗ SOκ4,...,κN (N − 2) κ3 3(N − 2) 3

...
...

...
...

H(m) = SOκ1,...,κm−1(m)⊗ SOκm+1,...,κN (N + 1−m) κm m(N + 1−m) min (m,N + 1−m)
...

...
...

...
H(N−2) = SOκ1,...,κN−3

(N − 2)⊗ SOκN−1,κN (3) κN−2 (N − 2)3 3
H(N−1) = SOκ1,...,κN−2

(N − 1)⊗ SOκN (2) κN−1 (N − 1)2 2
H(N) = SOκ1,...,κN−1

(N) κN N 1
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5. Conclusions

•We have provided a review on CK spaces and their vector fields.

• These results could be applied to the field of Lie and Lie-Hamilton systems.

• The case for the vector fields coming from isometries is currently in progress.

• The case for the vector fields coming from conformal symmetries is devoted for
the future.
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