Geometry, Integrability and Quantization Varna, 2-7.06.2018

Tangent lifts of bi-Hamiltonian structures

Grzegorz Jakimowicz Institute of Mathematics University in Białystok

joint work with Alina Dobrogowska
Tangent lifts of bi-Hamiltonian structures, J. Math. Phys. 58 (2017), no. 8, 1-15.

Poisson manifold ($M,\{\cdot, \cdot\}$)

Definition

A Poisson manifold $(M,\{\cdot, \cdot\})$ is a smooth manifold M (equipped with a Poisson structure) with a fixed bilinear and antisymmetric mapping $\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$, which satisfies Leibniz rule and Jacobi identity.

$$
\begin{gathered}
\{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\}=0, \\
\{f, g h\}=\{f, g\} h+g\{f, h\},
\end{gathered}
$$

where $f, g, h \in C^{\infty}(M)$.
Poisson bracket can be written in terms of Poisson tensor $\left(\pi \in \Gamma^{\infty}\left(\bigwedge^{2} T M\right)\right.$ such that $\left.[\pi, \pi]_{S-N}=0\right)$ as follows

$$
\{f, g\}=\pi(d f, d g)
$$

Poisson tensor, Hamilton's equations

In the local coordinates $x_{1}, x_{2}, \ldots, x_{N}$ on M

$$
\{f, g\}=\sum_{i, j=1}^{N} \pi_{i j}(x) \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}} .
$$

Components of Poisson tensor are given by the formula

$$
\pi_{i j}(x)=\left\{x_{i}, x_{j}\right\}
$$

and satisfy

- $\pi_{i j}=-\pi_{j i}$,
- $\frac{\partial \pi_{i j}}{\partial x_{s}} \pi_{s k}+\frac{\partial \pi_{k i}}{\partial x_{s}} \pi_{s j}+\frac{\partial \pi_{j k}}{\partial x_{s}} \pi_{s i}=0$.

Choosing the function H as a Hamiltonian we can define a dynamics on M using Hamilton equations

$$
\begin{gathered}
\frac{d x_{i}}{d t}=\left\{x_{i}, H\right\}, \quad i=1,2, \ldots, N \\
\frac{d x}{d t}=\pi \nabla H
\end{gathered}
$$

Bi-Hamiltonian structures

Let M be a manifold with two non-proportional Poisson brackets $\{\cdot, \cdot\}_{1},\{\cdot, \cdot\}_{2}$. If their linear combination $\alpha\{\cdot, \cdot\}_{1}+\beta\{\cdot, \cdot\}_{2}$, $\alpha, \beta \in \mathbb{R}$, is also a Poisson bracket, we say that the brackets are compatible and we call M the bi-Hamiltonian manifold.
By analogy we will say that two Poisson tensors π_{1} and π_{2} are compatible if their Schouten-Nijenhuis bracket vanishes

$$
\left[\pi_{1}, \pi_{2}\right]_{S-N}=0
$$

$\frac{\partial \pi_{1}^{i j}}{\partial x^{s}} \pi_{2}^{s k}+\frac{\partial \pi_{2}^{i j}}{\partial x^{s}} \pi_{1}^{s k}+\frac{\partial \pi_{1}^{k i}}{\partial x^{s}} \pi_{2}^{s j}+\frac{\partial \pi_{2}^{k i}}{\partial x^{s}} \pi_{1}^{s j}+\frac{\partial \pi_{1}^{j k}}{\partial x^{s}} \pi_{2}^{s i}+\frac{\partial \pi_{2}^{j k}}{\partial x^{s}} \pi_{1}^{s i}=0$.

Example- Bi -Hamiltonian structure related to so(3)

Let us consider the Lie algebra $\mathfrak{s o}(3)$ of skew-symmetric matrices. We will now construct two Lie brackets on $\mathfrak{s o}$ (3) given by two choices of the matrix S

$$
[A, B]=A B-B A, \quad[A, B]_{S}=A S B-B S A
$$

where $S=\operatorname{diag}\left(s_{1}, s_{2}, s_{3}\right)$. We define the Lie-Poisson bracket

$$
\begin{aligned}
\{f, g\}_{1}(\rho)=\langle\rho,[d f(\rho), d g(\rho)]\rangle & =\frac{1}{2} \operatorname{tr}(\rho[d f(\rho), d g(\rho)]) \\
\{f, g\}_{2}(\rho)=\left\langle\rho,[d f(\rho), d g(\rho)]_{S}\right\rangle & =\frac{1}{2} \operatorname{tr}\left(\rho[d f(\rho), d g(\rho)]_{S}\right)
\end{aligned}
$$

The Poisson tensors can be written in the form

$$
\pi_{1}(X)=\left(\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right), \pi_{2}(X)=\left(\begin{array}{ccc}
0 & -s_{3} x_{3} & s_{2} x_{2} \\
s_{3} x_{3} & 0 & -s_{1} x_{1} \\
-s_{2} x_{2} & s_{1} x_{1} & 0
\end{array}\right)
$$

In this case, the Casimirs for these structures assume the following form

$$
c_{1}(X)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \quad c_{2}(X)=s_{1} x_{1}^{2}+s_{2} x_{2}^{2}+s_{3} x_{3}^{2} .
$$

Choosing as the Hamiltonian the Casimir c_{2} we obtain Euler's equation, which describes the rotation of a rigid body

$$
\frac{d \vec{x}}{d t}=\left\{c_{2}, \vec{x}\right\}_{1}=\left\{c_{1}, \vec{x}\right\}_{2}=2\left(S_{2} \vec{x}\right) \times \vec{x}
$$

where $\vec{x}=\left(x_{1}, x_{2}, x_{2}\right)$ and $S_{2}=\operatorname{diag}\left(s_{1}, s_{2}, s_{3}\right)$.

Lie Algebroid

Definition

Let M be a manifold. A Lie algebroid on M is a vector bundle $A \rightarrow M$, together with a vector bundle map $a: A \longrightarrow T M$, called the anchor of a Lie algebroid A, and a bracket $[\cdot, \cdot]_{A}: \Gamma A \times \Gamma A \longrightarrow \Gamma A$ which is \mathbb{R}-bilinear and alternating, satisfies the Jacobi identity (ΓA is a Lie algebra), and is such that

$$
\begin{align*}
& {[X, f Y]_{A}=f[X, Y]_{A}+a(X)(f) Y,} \tag{1}\\
& a\left([X, Y]_{A}\right)=[a(X), a(Y)] \tag{2}
\end{align*}
$$

for all $X, Y \in \Gamma A, f \in C^{\infty}(M)$. The manifold M is called the base of a Lie algebroid A.

Example

Let $(M,\{.,\}$.$) be a Poisson manifold, then its cotangent bundle$ $T^{*} M \rightarrow M$ possesses a Lie algebroid structure given by

$$
\begin{gathered}
a(d f):=\{f, .\} \\
{[d f, d g]_{T^{*} M}:=d\{f, g\},}
\end{gathered}
$$

where $f, g \in C^{\infty}(M)$.

Linear Fiber-wise Poisson Structure

If $\left(A \rightarrow M,[\cdot, \cdot]_{A}, a\right)$ is a Lie algebroid then on the total space A^{*} of dual bundle $A^{*} \xrightarrow{q} M$ there exists a Poisson structure given by

$$
\begin{gather*}
\{f \circ q, g \circ q\}=0, \\
\left\{l_{X}, g \circ q\right\}=a(X)(g) \circ q \tag{3}
\end{gather*}
$$

$$
\left\{l_{X}, l_{Y}\right\}=l_{[X, Y]_{A}},
$$

where $X, Y \in \Gamma^{\infty}(A), l_{X}(v)=\langle v, X(q(v))\rangle, v \in A^{*}$ and $f, g \in C^{\infty}(M)$.

Lifting of a Hamiltonian structure from M to $T M$

Theorem

If $(M,\{\}$,$) is a Poisson manifold, then the manifold TM possesses$ a Poisson structure given by

$$
\begin{gather*}
\{f \circ q, g \circ q\}_{T M}=0, \\
\left\{l_{d f}, g \circ q\right\}_{T M}=\{f, g\} \circ q \tag{4}\\
\left\{l_{d f}, l_{d g}\right\}_{T M}=l_{d\{f, g\}},
\end{gather*}
$$

where $l_{d f}(v)=\langle v, d f(q(v))\rangle, v \in T M$ and $f, g \in C^{\infty}(M)$.

Corollary

Let (M, π) be a Poisson manifold and let $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a system of local coordinates on M. Then the Poisson tensor $\pi_{T M}$ on the manifold $T M$ associated with π has the form

$$
\pi_{T M}(\mathbf{x}, \mathbf{y})=\left(\begin{array}{c|c}
0 & \pi\left(x_{1}, \ldots, x_{N}\right) \\
\hline \pi\left(x_{1}, \ldots, x_{N}\right) & \sum_{s=1}^{N} \frac{\partial \pi}{\partial x_{s}}\left(x_{1}, \ldots, x_{N}\right) y_{s}
\end{array}\right)
$$

in the system of local coordinates $(\mathbf{x}, \mathbf{y})=\left(x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{N}\right)$ on TM.

Lifting of Casimir functions from M to $T M$

Theorem

Let c_{1}, \ldots, c_{r}, where $r=\operatorname{dim} M-\operatorname{rank} \pi$, be Casimir functions for the the Poisson structure π, then the functions

$$
c_{i} \circ q \quad \text { and } \quad l_{d c_{i}}=\sum_{s=1}^{N} \frac{\partial c_{i}}{\partial x_{s}} y_{s}, \quad i=1, \ldots r
$$

are the Casimir functions for the Poisson tensor $\pi_{T M}$.

Lifting of functions in involution from M to $T M$

Theorem

Let functions $\left\{H_{i}\right\}_{i=1}^{k}$ be in involution with respect to the Poisson bracket generated by π, then the functions

$$
\begin{equation*}
\left\{H_{i} \circ q, l_{d H_{i}}=\sum_{s=1}^{N} \frac{\partial H_{i}}{\partial x_{s}}(\mathbf{x}) y_{s}\right\}_{i=1}^{k}, \tag{5}
\end{equation*}
$$

are in involution with respect to the Poisson tensor $\pi_{T M}$.

Theorem

If $\left(M, \pi_{1}, \pi_{2}\right)$ is a bi-Hamilton manifold then $\left(T M, \pi_{1, T M}, \pi_{2, T M}\right)$ is a bi-Hamilton manifold.

In the case of a linear Poisson structure, we have additionally a Lie-Poisson structure on $T M$.

Theorem

Let π be the Lie-Poisson structure on \mathfrak{g}^{*}. Then the tensor

$$
\tilde{\pi}_{T_{\mathfrak{g}^{*}}}(\mathbf{x}, \mathbf{y})=\left(\begin{array}{c|c}
\lambda \pi(\mathbf{y}) & \pi(\mathbf{x}) \\
\hline \pi(\mathbf{x}) & \pi(\mathbf{y})
\end{array}\right)
$$

gives the Poisson structure on $T \mathfrak{g}^{*}$ for any $\lambda \in \mathbb{R}$.

Theorem

Let c_{1}, \ldots, c_{r}, where $r=\operatorname{dim} M-\operatorname{rank} \pi$, be Casimir functions for the Poisson structure π with $\lambda \neq 0$, then the functions

$$
c_{i}(\mathbf{t})+c_{i}(\mathbf{w}) \quad c_{i}(\mathbf{t})-c_{i}(\mathbf{w}), \quad i=1, \ldots r
$$

where $\mathbf{t}=\left(x_{1}-\sqrt{\lambda} y_{1}, \ldots, x_{N}-\sqrt{\lambda} y_{N}\right)$,
$\mathbf{w}=\left(x_{1}+\sqrt{\lambda} y_{1}, \ldots, x_{N}+\sqrt{\lambda} y_{N}\right)$, are the Casimir functions.

Example

The Poisson structures on $T \mathfrak{s o}(3)$ are given by tensors

$$
\pi_{1, T M}(X, Y)=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & -x_{3} & x_{2} \\
0 & 0 & 0 & x_{3} & 0 & -x_{1} \\
0 & 0 & 0 & -x_{2} & x_{1} & 0 \\
0 & -x_{3} & x_{2} & 0 & -y_{3} & y_{2} \\
x_{3} & 0 & -x_{1} & y_{3} & 0 & -y_{1} \\
-x_{2} & x_{1} & 0 & -y_{2} & y_{1} & 0
\end{array}\right)
$$

Moreover the Casimirs are given by

$$
c_{1}(X)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \quad \frac{1}{2} l_{d c_{1}}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} .
$$

In this case we recognize the Lie-Poisson structure of $\mathfrak{e}(3) \cong T \mathfrak{s o}(3)$.

We have another Poisson structure on $T \mathfrak{s o}(3)$

$$
\tilde{\pi}_{1, T M}(X, Y)=\left(\begin{array}{cccccc}
0 & -y_{3} & y_{2} & 0 & -x_{3} & x_{2} \\
y_{3} & 0 & -y_{1} & x_{3} & 0 & -x_{1} \\
-y_{2} & y_{1} & 0 & -x_{2} & x_{1} & 0 \\
0 & -x_{3} & x_{2} & 0 & -y_{3} & y_{2} \\
x_{3} & 0 & -x_{1} & y_{3} & 0 & -y_{1} \\
-x_{2} & x_{1} & 0 & -y_{2} & y_{1} & 0
\end{array}\right) .
$$

In this case, we recognize the Lie-Poisson structure of $\mathfrak{s o}(4) \cong T \mathfrak{s o}(3)$. The Casimir functions now are given by the formulas

$$
\begin{aligned}
& c_{1}(X+Y)+c_{1}(X-Y)=2\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right) \\
& c_{1}(X+Y)-c_{1}(X-Y)=4\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)
\end{aligned}
$$

Lifting of a bi-Hamiltonian structure from M to TM (Main results)

Theorem

If $\left(M,\{,\}_{1},\{,\}_{2}\right)$ is a bi-Hamiltonian manifold, then for any $\lambda \in \mathbb{R}$ its tangent bundle $T M$ possesses a Poisson structure $\{,\}_{T M, \lambda}$ given by

$$
\begin{gather*}
\{f \circ q, g \circ q,\}_{T M, \lambda}=0, \\
\left\{l_{d f}, g \circ q\right\}_{T M, \lambda}=\{f, g\}_{1} \circ q \tag{6}\\
\left\{l_{d f}, l_{d g}\right\}_{T M, \lambda}=l_{d\{f, g\}_{1}}+\lambda\{f, g\}_{2} \circ q,
\end{gather*}
$$

where $l_{d f}(v)=\langle v, d f(q(v))\rangle, v \in T M$ and $f, g \in C^{\infty}(M)$.

Lifting of a bi-Hamiltonian structure from M to TM

Corollary

Let $\left(M, \pi_{1}, \pi_{2}\right)$ be a bi-Hamiltonian manifold and let
$\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a system of local coordinates on M. Then the Poisson tensor $\pi_{T M, \lambda}$ related to (M, π_{1}, π_{2}) takes form

$$
\pi_{T M, \lambda}(\mathbf{x}, \mathbf{y})=\left(\begin{array}{c|c}
0 & \pi_{1}(\mathbf{x}) \\
\hline \pi_{1}(\mathbf{x}) & \sum_{s=1}^{N} \frac{\partial \pi_{1}}{\partial x_{s}}(\mathbf{x}) y_{s}+\lambda \pi_{2}(\mathbf{x})
\end{array}\right)
$$

in the system of local coordinates $(\mathbf{x}, \mathbf{y})=\left(x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{N}\right)$ on TM.

Lifting of Casimir functions from M to $T M$

Theorem

Let c_{1}, \ldots, c_{r}, where $r=\operatorname{dim} M-\operatorname{rank} \pi$, be Casimir functions for the Poisson structure π_{1} and functions $f_{i}^{\lambda}, i=1, \ldots, r$, satisfy the conditions $\left\{f_{i}^{\lambda}, x_{j}\right\}_{1}=\left\{x_{j}, c_{i}\right\}_{2}$, for $j=1, \cdots, n$, then the functions

$$
c_{i} \circ q \quad \text { and } \quad \tilde{c}_{i}=\sum_{s=1}^{N} \frac{\partial c_{i}}{\partial x_{s}}(\mathbf{x}) y_{s}+\lambda f_{i}^{\lambda}(\mathbf{x}), \quad i=1, \ldots r,
$$

are the Casimir functions for the Poisson tensor $\pi_{T M, \lambda}$.

Theorem

If the functions $\left\{H_{i}\right\}$ are in involution with respect to the Poisson tensor π then the functions $\left\{H_{i} \circ q, \tilde{H}_{i}=\sum_{s=1}^{N} \frac{\partial H_{i}}{\partial x_{s}}(\mathbf{x}) y_{s}\right\}$ are in involution with respect to the Poisson tensor $\pi_{T M, \lambda}$.

Toda lattice - bi-Hamiltonian system

The Hamiltonian

$$
H=\sum_{i \in \mathbb{Z}}\left(\frac{1}{2} p_{i}^{2}+e^{q_{i-1}-q_{i}}\right)
$$

Hamilton's equations

$$
\left\{\begin{array}{l}
\dot{q}_{i}=\left\{q_{i}, H\right\}=p_{i} \\
\dot{p}_{i}=\left\{p_{i}, H\right\}=e^{q_{i-1}-q_{i}}-e^{q_{i}-q_{i+1}}
\end{array} .\right.
$$

Under Flaschka's transformation

$$
a_{i}=\frac{1}{2} e^{\frac{\left(q_{i-1}-q_{i}\right)}{2}}, \quad b_{i}=-\frac{1}{2} p_{i-1}
$$

the system transforms to

$$
\begin{aligned}
\frac{d a_{i}}{d t} & =a_{i}\left(b_{i+1}-b_{i}\right) \\
\frac{d b_{i}}{d t} & =2\left(a_{i}^{2}-a_{i-1}^{2}\right)
\end{aligned}
$$

The Toda lattice is equivalent to the Lax equation

$$
\frac{d L}{d t}=[A, L],
$$

where

$$
\begin{gathered}
L f_{i}=a_{i} f_{i+1}+b_{i} f_{i}+a_{i-1} f_{i-1}, \\
A f_{i}=a_{i} f_{i+1}-a_{i-1} f_{i-1}
\end{gathered}
$$

are linear operators in the Hilbert space of square summable sequences $l^{2}(\mathbb{Z})$.

The Toda lattice is a bi-Hamiltonian system. There exist another Poisson bracket, which we denote by π_{2}, and another function H_{1}, which will play the role of the Hamiltonian for the π_{2} bracket, such that $\pi_{1}+\pi_{2}$ is Poisson tensor and $\pi_{1} \nabla H=\pi_{2} \nabla H_{1}$ $\left(H=\sum_{i}\left(2 b_{i}^{2}+4 a_{i}^{2}\right)\right)$. The Poisson tensor π_{1} is given by the relations

$$
8\left\{a_{i}, b_{i}\right\}_{1}=-a_{i}, \quad 8\left\{a_{i}, b_{i+1}\right\}_{1}=a_{i}
$$

For the Toda lattice the π_{2} bracket (which appeared in a paper of M . Adler) is quadratic in the variables b_{i}, a_{i} and it is given by the relations

$$
\begin{gathered}
\left\{a_{i}, a_{i+1}\right\}_{2}=\frac{1}{2} a_{i} a_{i+1}, \quad\left\{a_{i}, b_{i}\right\}_{2}=-a_{i} b_{i} \\
\left\{a_{i}, b_{i+1}\right\}_{2}=a_{i} b_{i+1}, \quad\left\{b_{i}, b_{i+1}\right\}_{2}=2 a_{i}^{2}
\end{gathered}
$$

and all other brackets are zero.

Example- Extended Toda Lattice

Functions $H_{k}=\operatorname{Tr} L^{k}$ are the functions in involutions with respect to the both brackets. The above functions for $k=1,2,3$ have the expressions

$$
\begin{align*}
& H_{1}=\operatorname{tr} L=\sum_{i \in \mathbb{Z}} b_{i}, H_{2}=2 H=\operatorname{tr} L^{2}=\sum_{i \in \mathbb{Z}}\left(b_{i}^{2}+2 a_{i}^{2}\right) \tag{7}\\
& H_{3}=\operatorname{tr} L^{3}=\sum_{i \in \mathbb{Z}}\left(b_{i}^{3}+3 a_{i}^{2} b_{i}+3 a_{i}^{2} b_{i+1}\right)
\end{align*}
$$

Now deformed tangent Poisson structure $\pi_{T M, \lambda}$ in local coordinates $a_{i}, b_{i}, n_{i}, m_{i}, i \in \mathbb{Z}$, is given by the relation

$$
\begin{array}{ll}
\left\{a_{i}, m_{i}\right\}_{T M, \lambda}=-\frac{1}{4} a_{i}, & \left\{a_{i}, m_{i+1}\right\}_{T M, \lambda}=\frac{1}{4} a_{i} \\
\left\{b_{i}, n_{i}\right\}_{T M, \lambda}=\frac{1}{4} a_{i}, & \left\{b_{i+1}, n_{i}\right\}_{T M, \lambda}=-\frac{1}{4} a_{i}, \\
\left\{n_{i}, n_{i+1}\right\}_{T M, \lambda}=\frac{\lambda}{2} a_{i} a_{i+1}, & \left\{n_{i}, m_{i}\right\}_{T M, \lambda}=-\frac{1}{4} n_{i}-\lambda a_{i} b_{i}
\end{array}
$$

From the last theorem we transform the functions $H_{k}=\operatorname{Tr} L^{k}$ into the functions $H_{k} \circ q_{M}^{*}=\operatorname{Tr} L^{k} \circ q_{M}^{*}$ and

$$
\begin{array}{rlrl}
\tilde{H}_{k} & =\sum_{s=1}^{N}\left(\frac{\partial H_{k}}{\partial a_{s}} n_{s}+\frac{\partial H_{k}}{\partial b_{s}} m_{s}\right), & \text { i.e. } & \\
H_{1} & =\sum_{i \in \mathbb{Z}} b_{i}, & \tilde{H}_{1}=\sum_{i \in \mathbb{Z}} m_{i} \\
H_{2} & =\sum_{i \in \mathbb{Z}}\left(b_{i}^{2}+2 a_{i}^{2}\right), & \tilde{H}_{2}=\sum_{i \in \mathbb{Z}}\left(2 b_{i} m_{i}+4 a_{i} n_{i}\right),
\end{array}
$$

$$
\begin{align*}
H_{3}=\sum_{i \in \mathbb{Z}}\left(b_{i}^{3}+3 a_{i}^{2} b_{i}+3 a_{i}^{2} b_{i+1}\right), \quad \tilde{H}_{3}= & \sum_{i \in \mathbb{Z}}\left(3 b_{i}^{2} m_{i}+3 a_{i}^{2} m_{i}+3 a_{i}^{2} m_{i+}\right. \tag{11}\\
& \left.+6 a_{i} b_{i} n_{i}+6 a_{i} b_{i+1} n_{i}\right),
\end{align*}
$$

Now if we take as the Hamiltonian

$$
\begin{equation*}
H=\alpha H_{2}+\beta \tilde{H}_{2}=\sum_{i \in \mathbb{Z}}\left(\alpha b_{i}^{2}+2 \alpha a_{i}^{2}+2 \beta b_{i} m_{i}+4 \beta a_{i} n_{i}\right) \tag{12}
\end{equation*}
$$

then Hamilton's equations are in the form

$$
\begin{aligned}
\frac{d a_{i}}{d t} & =\frac{1}{2} \beta a_{i}\left(b_{i+1}-b_{i}\right) \\
\frac{d b_{i}}{d t} & =\beta\left(a_{i}^{2}-a_{i-1}^{2}\right) \\
\frac{d n_{i}}{d t} & =\frac{1}{2} \alpha a_{i}\left(b_{i+1}-b_{i}\right)+\frac{1}{2} \beta a_{i}\left(m_{i+1}-m_{i}\right)+\frac{1}{2} \beta n_{i}\left(b_{i+1}-b_{i}\right)+ \\
& +2 \beta \lambda a_{i}\left(a_{i+1}^{2}-a_{i-1}^{2}-b_{i}^{2}+b_{i+1}^{2}\right) \\
\frac{d m_{i}}{d t} & =\alpha\left(a_{i}^{2}-a_{i-1}^{2}\right)+2 \beta\left(a_{i} n_{i}-a_{i-1} n_{i-1}\right)+ \\
& +4 \beta \lambda\left(a_{i}^{2} b_{i+1}+a_{i}^{2} b_{i}-a_{i-1}^{2} b_{i}-a_{i-1}^{2} b_{i-1}\right)
\end{aligned}
$$

We can interpret these equations as an extension of the Toda lattice. It is the integrable system, where the integrals of motions are given by formulas (11). If we put $\alpha=\lambda=0, \beta=2$ and we take $n_{i}=m_{i}=0$ then we observe that we reduce it to Toda lattice

Thank you for your attention

