Geometry, Integrability and Quantization Varna, 2-7.06.2018

Tangent lifts of bi-Hamiltonian structures

Grzegorz Jakimowicz Institute of Mathematics University in Białystok

joint work with Alina Dobrogowska

Tangent lifts of bi-Hamiltonian structures, J. Math. Phys. 58 (2017), no. 8, 1-15.

Definition

A Poisson manifold $(M, \{\cdot, \cdot\})$ is a smooth manifold M (equipped with a Poisson structure) with a fixed bilinear and antisymmetric mapping $\{\cdot, \cdot\} : C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$, which satisfies Leibniz rule and Jacobi identity.

$$\{\{f,g\},h\} + \{\{g,h\},f\} + \{\{h,f\},g\} = 0,$$

$$\{f,gh\} = \{f,g\}h + g\{f,h\},$$

where $f, g, h \in C^{\infty}(M)$.

Poisson bracket can be written in terms of Poisson tensor $(\pi \in \Gamma^{\infty} \left(\bigwedge^2 TM \right)$ such that $[\pi, \pi]_{S-N} = 0)$ as follows

$$\{f,g\} = \pi(df,dg).$$

Poisson tensor, Hamilton's equations

In the local coordinates x_1, x_2, \ldots, x_N on M

$$\{f,g\} = \sum_{i,j=1}^{N} \pi_{ij}(x) \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}.$$

Components of Poisson tensor are given by the formula

$$\pi_{ij}(x) = \{x_i, x_j\}$$

and satisfy

•
$$\pi_{ij} = -\pi_{ji}$$
,
• $\frac{\partial \pi_{ij}}{\partial x_s} \pi_{sk} + \frac{\partial \pi_{ki}}{\partial x_s} \pi_{sj} + \frac{\partial \pi_{jk}}{\partial x_s} \pi_{si} = 0$.

Choosing the function H as a Hamiltonian we can define a dynamics on M using Hamilton equations

$$\frac{dx_i}{dt} = \{x_i, H\}, \quad i = 1, 2, \dots, N,$$
$$\frac{dx}{dt} = \pi \nabla H,$$

Let M be a manifold with two non-proportional Poisson brackets $\{\cdot, \cdot\}_1, \{\cdot, \cdot\}_2$. If their linear combination $\alpha\{\cdot, \cdot\}_1 + \beta\{\cdot, \cdot\}_2$, $\alpha, \beta \in \mathbb{R}$, is also a Poisson bracket, we say that the brackets are compatible and we call M the bi-Hamiltonian manifold. By analogy we will say that two Poisson tensors π_1 and π_2 are compatible if their Schouten-Nijenhuis bracket vanishes

$$[\pi_1, \pi_2]_{S-N} = 0.$$

 $\frac{\partial \pi_1^{ij}}{\partial x^s}\pi_2^{sk} + \frac{\partial \pi_2^{ij}}{\partial x^s}\pi_1^{sk} + \frac{\partial \pi_1^{ki}}{\partial x^s}\pi_2^{sj} + \frac{\partial \pi_2^{ki}}{\partial x^s}\pi_1^{sj} + \frac{\partial \pi_1^{jk}}{\partial x^s}\pi_2^{si} + \frac{\partial \pi_2^{jk}}{\partial x^s}\pi_1^{si} = 0.$

Example- Bi-Hamiltonian structure related to so(3)

Let us consider the Lie algebra $\mathfrak{so}(3)$ of skew-symmetric matrices. We will now construct two Lie brackets on $\mathfrak{so}(3)$ given by two choices of the matrix S

$$[A,B] = AB - BA, \quad [A,B]_S = ASB - BSA,$$

where $S = \operatorname{diag}(s_1, s_2, s_3)$. We define the Lie-Poisson bracket

$$\{f,g\}_1(\rho) = \langle \rho, [df(\rho), dg(\rho)] \rangle = \frac{1}{2} \operatorname{tr} \left(\rho [df(\rho), dg(\rho)] \right),$$

$$\{f,g\}_2(\rho) = \langle \rho, [df(\rho), dg(\rho)]_S \rangle = \frac{1}{2} \operatorname{tr} \left(\rho [df(\rho), dg(\rho)]_S \right),$$

The Poisson tensors can be written in the form

$$\pi_1(X) = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}, \\ \pi_2(X) = \begin{pmatrix} 0 & -s_3x_3 & s_2x_2 \\ s_3x_3 & 0 & -s_1x_1 \\ -s_2x_2 & s_1x_1 & 0 \end{pmatrix}$$

In this case, the Casimirs for these structures assume the following form

$$c_1(X) = x_1^2 + x_2^2 + x_3^2, \quad c_2(X) = s_1 x_1^2 + s_2 x_2^2 + s_3 x_3^2$$

Choosing as the Hamiltonian the Casimir c_2 we obtain Euler's equation, which describes the rotation of a rigid body

$$\frac{d\vec{x}}{dt} = \{c_2, \vec{x}\}_1 = \{c_1, \vec{x}\}_2 = 2\left(S_2\vec{x}\right) \times \vec{x},$$

where $\vec{x} = (x_1, x_2, x_2)$ and $S_2 = \text{diag} (s_1, s_2, s_3)$.

Definition

Let M be a manifold. A Lie algebroid on M is a vector bundle $A \to M$, together with a vector bundle map $a: A \longrightarrow TM$, called the anchor of a Lie algebroid A, and a bracket $[\cdot, \cdot]_A: \Gamma A \times \Gamma A \longrightarrow \Gamma A$ which is \mathbb{R} -bilinear and alternating, satisfies the Jacobi identity (ΓA is a Lie algebra), and is such that

$$[X, fY]_A = f[X, Y]_A + a(X)(f)Y,$$
(1)

$$a([X, Y]_A) = [a(X), a(Y)].$$
(2)

for all $X, Y \in \Gamma A$, $f \in C^{\infty}(M)$. The manifold M is called the base of a Lie algebroid A.

Let $(M,\{.,.\})$ be a Poisson manifold, then its cotangent bundle $T^*M\to M$ possesses a Lie algebroid structure given by

$$a(df):=\{f,.\}$$

$$[df,dg]_{T^*M}:=d\{f,g\},$$
 where $f,g\in C^\infty(M).$

If $(A \to M, [\cdot, \cdot]_A, a)$ is a Lie algebroid then on the total space A^* of dual bundle $A^* \xrightarrow{q} M$ there exists a Poisson structure given by

 $\{f \circ q, g \circ q\} = 0,$

$$\{l_X, g \circ q\} = a(X)(g) \circ q \tag{3}$$

 $\{l_X, l_Y\} = l_{[X,Y]_A},$ where $X, Y \in \Gamma^{\infty}(A), \ l_X(v) = \langle v, X(q(v)) \rangle, \ v \in A^*$ and $f, g \in C^{\infty}(M).$

Theorem

If $(M, \{,\})$ is a Poisson manifold, then the manifold TM possesses a Poisson structure given by

 $\{f \circ q, g \circ q\}_{TM} = 0,$

$$\{l_{df}, g \circ q\}_{TM} = \{f, g\} \circ q \tag{4}$$

$$\{l_{df}, l_{dg}\}_{TM} = l_{d\{f,g\}},$$

where $l_{df}(v) = \langle v, df(q(v)) \rangle$, $v \in TM$ and $f, g \in C^{\infty}(M)$.

Corollary

Let (M, π) be a Poisson manifold and let $\mathbf{x} = (x_1, \ldots, x_N)$ be a system of local coordinates on M. Then the Poisson tensor π_{TM} on the manifold TM associated with π has the form

$$\pi_{TM}(\mathbf{x}, \mathbf{y}) = \left(\begin{array}{c|c} 0 & \pi(x_1, \dots, x_N) \\ \hline \pi(x_1, \dots, x_N) & \sum_{s=1}^N \frac{\partial \pi}{\partial x_s}(x_1, \dots, x_N) y_s \end{array} \right),$$

in the system of local coordinates $(\mathbf{x}, \mathbf{y}) = (x_1, \dots, x_N, y_1, \dots, y_N)$ on TM.

Lifting of Casimir functions from M to TM

Theorem

Let c_1, \ldots, c_r , where $r = \dim M - \operatorname{rank} \pi$, be Casimir functions for the the Poisson structure π , then the functions

$$c_i \circ q$$
 and $l_{dc_i} = \sum_{s=1}^N \frac{\partial c_i}{\partial x_s} y_s$, $i = 1, \dots r$,

are the Casimir functions for the Poisson tensor π_{TM} .

Lifting of functions in involution from M to TM

Theorem

Let functions $\{H_i\}_{i=1}^k$ be in involution with respect to the Poisson bracket generated by π , then the functions

$$\{H_i \circ q, \ l_{dH_i} = \sum_{s=1}^N \frac{\partial H_i}{\partial x_s} (\mathbf{x}) y_s\}_{i=1}^k,$$
(5)

are in involution with respect to the Poisson tensor π_{TM} .

Theorem

If (M, π_1, π_2) is a bi-Hamilton manifold then $(TM, \pi_{1,TM}, \pi_{2,TM})$ is a bi-Hamilton manifold.

In the case of a linear Poisson structure, we have additionally a Lie-Poisson structure on $TM. \label{eq:poisson}$

Theorem

Let π be the Lie-Poisson structure on \mathfrak{g}^* . Then the tensor

$$ilde{\pi}_{T\mathfrak{g}^*}(\mathbf{x},\mathbf{y}) = \left(egin{array}{c|c} \lambda \pi(\mathbf{y}) & \pi(\mathbf{x}) \ \hline \pi(\mathbf{x}) & \pi(\mathbf{y}) \end{array}
ight)$$

gives the Poisson structure on $T\mathfrak{g}^*$ for any $\lambda \in \mathbb{R}$.

Theorem

Let c_1, \ldots, c_r , where $r = \dim M - \operatorname{rank} \pi$, be Casimir functions for the Poisson structure π with $\lambda \neq 0$, then the functions

$$c_i(\mathbf{t}) + c_i(\mathbf{w})$$
 $c_i(\mathbf{t}) - c_i(\mathbf{w}), \quad i = 1, \dots r,$

where $\mathbf{t} = (x_1 - \sqrt{\lambda}y_1, \dots, x_N - \sqrt{\lambda}y_N)$, $\mathbf{w} = (x_1 + \sqrt{\lambda}y_1, \dots, x_N + \sqrt{\lambda}y_N)$, are the Casimir functions.

Example

The Poisson structures on $T\mathfrak{so}(3)$ are given by tensors

$$\pi_{1,TM}(X,Y) = \begin{pmatrix} 0 & 0 & 0 & -x_3 & x_2 \\ 0 & 0 & 0 & x_3 & 0 & -x_1 \\ 0 & 0 & 0 & -x_2 & x_1 & 0 \\ 0 & -x_3 & x_2 & 0 & -y_3 & y_2 \\ x_3 & 0 & -x_1 & y_3 & 0 & -y_1 \\ -x_2 & x_1 & 0 & -y_2 & y_1 & 0 \end{pmatrix}$$

Moreover the Casimirs are given by

$$c_1(X) = x_1^2 + x_2^2 + x_3^2, \qquad \frac{1}{2}l_{dc_1} = x_1y_1 + x_2y_2 + x_3y_3.$$

In this case we recognize the Lie-Poisson structure of $\mathfrak{e}(3)\cong T\mathfrak{so}(3).$

•

We have another Poisson structure on $T\mathfrak{so}(3)$

$$\tilde{\pi}_{1,TM}(X,Y) = \begin{pmatrix} 0 & -y_3 & y_2 & 0 & -x_3 & x_2 \\ y_3 & 0 & -y_1 & x_3 & 0 & -x_1 \\ -y_2 & y_1 & 0 & -x_2 & x_1 & 0 \\ 0 & -x_3 & x_2 & 0 & -y_3 & y_2 \\ x_3 & 0 & -x_1 & y_3 & 0 & -y_1 \\ -x_2 & x_1 & 0 & -y_2 & y_1 & 0 \end{pmatrix}$$

In this case, we recognize the Lie-Poisson structure of $\mathfrak{so}(4) \cong T\mathfrak{so}(3)$. The Casimir functions now are given by the formulas

$$c_1(X+Y) + c_1(X-Y) = 2(x_1^2 + x_2^2 + x_3^2 + y_1^2 + y_2^2 + y_3^2),$$

$$c_1(X+Y) - c_1(X-Y) = 4(x_1y_1 + x_2y_2 + x_3y_3).$$

٠

Lifting of a bi-Hamiltonian structure from M to TM (Main results)

Theorem

If $(M, \{,\}_1, \{,\}_2)$ is a bi-Hamiltonian manifold, then for any $\lambda \in \mathbb{R}$ its tangent bundle TM possesses a Poisson structure $\{,\}_{TM,\lambda}$ given by

$$\{f \circ q, g \circ q, \}_{TM,\lambda} = 0,$$

$$\{l_{df}, g \circ q\}_{TM,\lambda} = \{f, g\}_1 \circ q \tag{6}$$

$$\{l_{df}, l_{dg}\}_{TM,\lambda} = l_{d\{f,g\}_1} + \lambda\{f,g\}_2 \circ q,$$

where $l_{df}(v) = \langle v, df(q(v)) \rangle, \ v \in TM$ and $f, g \in C^{\infty}(M)$.

Lifting of a bi-Hamiltonian structure from M to TM

Corollary

Let (M, π_1, π_2) be a bi-Hamiltonian manifold and let $\mathbf{x} = (x_1, \dots, x_N)$ be a system of local coordinates on M. Then the Poisson tensor $\pi_{TM,\lambda}$ related to (M, π_1, π_2) takes form

$$\pi_{TM,\lambda}(\mathbf{x},\mathbf{y}) = \left(\begin{array}{c|c} 0 & \pi_1(\mathbf{x}) \\ \hline \pi_1(\mathbf{x}) & \sum_{s=1}^N \frac{\partial \pi_1}{\partial x_s}(\mathbf{x})y_s + \lambda \pi_2(\mathbf{x}) \end{array} \right),$$

in the system of local coordinates $(\mathbf{x}, \mathbf{y}) = (x_1, \dots, x_N, y_1, \dots, y_N)$ on TM.

Lifting of Casimir functions from M to TM

Theorem

Let c_1, \ldots, c_r , where $r = \dim M - \operatorname{rank} \pi$, be Casimir functions for the Poisson structure π_1 and functions f_i^{λ} , $i = 1, \ldots, r$, satisfy the conditions $\{f_i^{\lambda}, x_j\}_1 = \{x_j, c_i\}_2$, for $j = 1, \cdots, n$, then the functions

$$c_i \circ q$$
 and $\tilde{c}_i = \sum_{s=1}^N \frac{\partial c_i}{\partial x_s}(\mathbf{x})y_s + \lambda f_i^{\lambda}(\mathbf{x}), \quad i = 1, \dots r$

are the Casimir functions for the Poisson tensor $\pi_{TM,\lambda}$.

Theorem

If the functions $\{H_i\}$ are in involution with respect to the Poisson tensor π then the functions $\{H_i \circ q, \ \tilde{H}_i = \sum_{s=1}^N \frac{\partial H_i}{\partial x_s}(\mathbf{x})y_s\}$ are in involution with respect to the Poisson tensor $\pi_{TM,\lambda}$.

Toda lattice — bi-Hamiltonian system

The Hamiltonian

$$H = \sum_{i \in \mathbb{Z}} \left(\frac{1}{2} p_i^2 + e^{q_{i-1} - q_i} \right).$$

Hamilton's equations

$$\begin{cases} \dot{q}_i = \{q_i, H\} = p_i \\ \dot{p}_i = \{p_i, H\} = e^{q_{i-1}-q_i} - e^{q_i-q_{i+1}} \end{cases}$$

Under Flaschka's transformation

$$a_i = \frac{1}{2}e^{\frac{(q_{i-1}-q_i)}{2}}, \quad b_i = -\frac{1}{2}p_{i-1}$$

the system transforms to

$$\frac{da_i}{dt} = a_i \left(b_{i+1} - b_i \right),$$
$$\frac{db_i}{dt} = 2 \left(a_i^2 - a_{i-1}^2 \right).$$

Tangent lifts of bi-Hamiltonian structures

٠

The Toda lattice is equivalent to the Lax equation

$$\frac{dL}{dt} = [A, L],$$

where

$$Lf_i = a_i f_{i+1} + b_i f_i + a_{i-1} f_{i-1},$$
$$Af_i = a_i f_{i+1} - a_{i-1} f_{i-1}$$

are linear operators in the Hilbert space of square summable sequences $l^2(\mathbb{Z})$.

The Toda lattice is a bi-Hamiltonian system. There exist another Poisson bracket, which we denote by π_2 , and another function H_1 , which will play the role of the Hamiltonian for the π_2 bracket, such that $\pi_1 + \pi_2$ is Poisson tensor and $\pi_1 \nabla H = \pi_2 \nabla H_1$ $(H = \sum_i (2b_i^2 + 4a_i^2))$. The Poisson tensor π_1 is given by the relations

$$8\{a_i, b_i\}_1 = -a_i, \quad 8\{a_i, b_{i+1}\}_1 = a_i.$$

For the Toda lattice the π_2 bracket (which appeared in a paper of M. Adler) is quadratic in the variables b_i, a_i and it is given by the relations

$$\{a_i, a_{i+1}\}_2 = \frac{1}{2}a_i a_{i+1}, \quad \{a_i, b_i\}_2 = -a_i b_i,$$
$$\{a_i, b_{i+1}\}_2 = a_i b_{i+1}, \quad \{b_i, b_{i+1}\}_2 = 2a_i^2$$

and all other brackets are zero.

Example- Extended Toda Lattice

Functions $H_k = TrL^k$ are the functions in involutions with respect to the both brackets. The above functions for k = 1, 2, 3 have the expressions

$$H_{1} = trL = \sum_{i \in \mathbb{Z}} b_{i}, \ H_{2} = 2H = trL^{2} = \sum_{i \in \mathbb{Z}} \left(b_{i}^{2} + 2a_{i}^{2} \right),$$
(7)
$$H_{3} = trL^{3} = \sum_{i \in \mathbb{Z}} \left(b_{i}^{3} + 3a_{i}^{2}b_{i} + 3a_{i}^{2}b_{i+1} \right).$$

Now deformed tangent Poisson structure $\pi_{TM,\lambda}$ in local coordinates $a_i, b_i, n_i, m_i, i \in \mathbb{Z}$, is given by the relation

$$\{a_{i}, m_{i}\}_{TM,\lambda} = -\frac{1}{4}a_{i}, \qquad \{a_{i}, m_{i+1}\}_{TM,\lambda} = \frac{1}{4}a_{i}, \qquad (8)$$

$$\{b_{i}, n_{i}\}_{TM,\lambda} = \frac{1}{4}a_{i}, \qquad \{b_{i+1}, n_{i}\}_{TM,\lambda} = -\frac{1}{4}a_{i}, \qquad (9)$$

$$\{n_{i}, n_{i+1}\}_{TM,\lambda} = \frac{\lambda}{2}a_{i}a_{i+1}, \qquad \{n_{i}, m_{i}\}_{TM,\lambda} = -\frac{1}{4}n_{i} - \lambda a_{i}b_{i}, \qquad (10)$$

From the last theorem we transform the functions $H_k = TrL^k$ into the functions $H_k \circ q_M^* = TrL^k \circ q_M^*$ and $\tilde{H}_k = \sum_{s=1}^N \left(\frac{\partial H_k}{\partial a_s} n_s + \frac{\partial H_k}{\partial b_s} m_s \right)$, i.e.

$$H_{1} = \sum_{i \in \mathbb{Z}} b_{i}, \qquad \qquad \tilde{H}_{1} = \sum_{i \in \mathbb{Z}} m_{i},$$

$$H_{2} = \sum_{i \in \mathbb{Z}} \left(b_{i}^{2} + 2a_{i}^{2} \right), \qquad \qquad \tilde{H}_{2} = \sum_{i \in \mathbb{Z}} \left(2b_{i}m_{i} + 4a_{i}n_{i} \right),$$
(11)

$$H_{3} = \sum_{i \in \mathbb{Z}} \left(b_{i}^{3} + 3a_{i}^{2}b_{i} + 3a_{i}^{2}b_{i+1} \right), \quad \tilde{H}_{3} = \sum_{i \in \mathbb{Z}} \left(3b_{i}^{2}m_{i} + 3a_{i}^{2}m_{i} + 3a_{i}^{2}m_{i+1} + 6a_{i}b_{i+1}n_{i} \right),$$

. . .

. . .

Now if we take as the Hamiltonian

$$H = \alpha H_2 + \beta \tilde{H}_2 = \sum_{i \in \mathbb{Z}} \left(\alpha b_i^2 + 2\alpha a_i^2 + 2\beta b_i m_i + 4\beta a_i n_i \right)$$
(12)

then Hamilton's equations are in the form

$$\frac{da_{i}}{dt} = \frac{1}{2}\beta a_{i} (b_{i+1} - b_{i}),$$

$$\frac{db_{i}}{dt} = \beta (a_{i}^{2} - a_{i-1}^{2}),$$

$$\frac{dn_{i}}{dt} = \frac{1}{2}\alpha a_{i} (b_{i+1} - b_{i}) + \frac{1}{2}\beta a_{i} (m_{i+1} - m_{i}) + \frac{1}{2}\beta n_{i} (b_{i+1} - b_{i}) + 2\beta\lambda a_{i} (a_{i+1}^{2} - a_{i-1}^{2} - b_{i}^{2} + b_{i+1}^{2}),$$

$$\frac{dm_{i}}{dt} = \alpha (a_{i}^{2} - a_{i-1}^{2}) + 2\beta (a_{i}n_{i} - a_{i-1}n_{i-1}) + 4\beta\lambda (a_{i}^{2}b_{i+1} + a_{i}^{2}b_{i} - a_{i-1}^{2}b_{i} - a_{i-1}^{2}b_{i-1}).$$
(13)

We can interpret these equations as an extension of the Toda lattice. It is the integrable system, where the integrals of motions are given by formulas (11). If we put $\alpha = \lambda = 0, \beta = 2$ and we take $n_i = m_i = 0$ then we observe that we reduce it to Toda lattice Tangent lifes of bi-Hamiltonian structures

Thank you for your attention