The Heisenberg group and $\mathrm{SL}_{2}(\mathbb{R})$
 a survival pack

Vladimir V. Kisil

School of Mathematics
University of Leeds (England)
email: kisilv@maths.leeds.ac.uk
Web: http://www.maths.leeds.ac.uk/~kisilv

Geometry, Integrability, Quantization-2018, Varna

$\mathrm{SL}_{2}(\mathbb{R})$ and Its Subgroups

$\mathrm{SL}_{2}(\mathbb{R})$ is the group of 2×2 matrices with real entries and det $=1$. A two dimensional subgroup $F\left(F^{\prime}\right)$ of lower (upper) triangular matrices:

$$
F=\left\{\frac{1}{\sqrt{a}}\left(\begin{array}{ll}
a & 0 \\
c & 1
\end{array}\right)\right\}, \quad F^{\prime}=\left\{\frac{1}{\sqrt{a}}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\right\}, \quad a \in \mathbb{R}_{+}, b, c \in \mathbb{R} .
$$

F is isomorphic to the group of affine transformations of the real line ($a x+b$ group), isomorphic to the upper half-plane. There are also three one dimensional continuous subgroups:

$$
\begin{align*}
& A=\left\{\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right)=\exp \left(\begin{array}{cc}
\mathrm{t} & 0 \\
0 & -t
\end{array}\right), \mathrm{t} \in \mathbb{R}\right\}, \tag{1}\\
& \mathrm{N}=\left\{\left(\begin{array}{ll}
1 & \mathrm{t} \\
0 & 1
\end{array}\right)=\exp \left(\begin{array}{ll}
0 & \mathrm{t} \\
0 & 0
\end{array}\right), \mathrm{t} \in \mathbb{R}\right\}, \tag{2}\\
& \mathrm{K}
\end{align*}=\left\{\left(\begin{array}{cc}
\cos \mathrm{t} & \sin \mathrm{t} \tag{3}\\
-\sin \mathrm{t} & \cos \mathrm{t}
\end{array}\right)=\exp \left(\begin{array}{cc}
0 & \mathrm{t} \\
-\mathrm{t} & 0
\end{array}\right), \mathrm{t} \in(-\pi, \pi]\right\} .
$$

... and Nothing Else

(up to a conjugacy)

Proposition 1.

Any one-parameter continuous subgroup of $\mathrm{SL}_{2}(\mathbb{R})$ is conjugate to either A, N or K .

Proof.

Any one-parameter subgroup is obtained through the exponentiation

$$
\begin{equation*}
e^{t X}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} x^{n} \tag{4}
\end{equation*}
$$

of an element X of the Lie algebra $\mathfrak{s l}_{2}$ of $\mathrm{SL}_{2}(\mathbb{R})$. Such X is a 2×2 matrix with the zero trace. The behaviour of the Taylor expansion (4) depends from properties of powers X^{n}. This can be classified by a straightforward calculation.

Elliptic, Parabolic, Hyperbolic

the First Appearance

Lemma 2.

The square X^{2} of a traceless matrix $\mathrm{X}=\left(\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & -\mathrm{a}\end{array}\right)$ is the identity matrix times $\mathrm{a}^{2}+\mathrm{bc}=-\operatorname{det} \mathrm{X}$. The factor can be negative, zero or positive, which corresponds to the three different types of the Taylor expansion (4) of $e^{t X}=\sum \frac{t^{n}}{n!} X^{n}$.
It is a simple exercise in the Gauss elimination to see that through the matrix similarity we can obtain from X a generator

- of the subgroup K if $(-\operatorname{det} X)<0$;
- of the subgroup N if $(-\operatorname{det} \mathrm{X})=0$;
- of the subgroup A if $(-\operatorname{det} X)>0$.

The determinant is invariant under the similarity, thus these cases are distinct.

$\mathrm{SL}_{2}(\mathbb{R})$ and Homogeneous Spaces

Let G be a group and H be its closed subgroup. The homogeneous space G / H from the equivalence relation: $\mathrm{g}^{\prime} \sim \mathrm{g}$ iff $\mathrm{g}^{\prime}=\mathrm{gh}, \mathrm{h} \in \mathrm{H}$. The natural projection $\mathrm{p}: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{H}$ puts $\mathrm{g} \in \mathrm{G}$ into its equivalence class.
A continuous section $s: G / H \rightarrow G$ is a right inverse of p, i.e. $p \circ s$ is an identity map on G / H. Then the left action of G on itself:

$$
\begin{aligned}
& \Lambda(\mathrm{g}): \mathrm{g}^{\prime} \mapsto \mathrm{g}^{-1} * \mathrm{~g}^{\prime}, \quad \text { generates }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{G} / \mathrm{H} \xrightarrow{\mathrm{~g}} \mathrm{G} / \mathrm{H}
\end{aligned}
$$

If $G=\operatorname{SL}_{2}(\mathbb{R})$ and $H=F$, then $\operatorname{SL}_{2}(\mathbb{R}) / F \sim \mathbb{R}$ and $p:\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto \frac{b}{d}$:
$\mathrm{s}: \mathrm{u} \mapsto\left(\begin{array}{ll}1 & \mathrm{u} \\ 0 & 1\end{array}\right), \quad \mathrm{g}: \mathfrak{u} \mapsto \mathrm{p}\left(\mathrm{g}^{-1} * \mathrm{~s}(\mathrm{u})\right)=\frac{\mathrm{au}+\mathrm{b}}{\mathrm{cu}+\mathrm{d}}, \quad \mathrm{g}^{-1}=\left(\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{c} \\ \text { UNvestryof Leeds }\end{array}\right)$.

$\mathrm{SL}_{2}(\mathbb{R})$ and Imaginary Units

Consider $G=\mathrm{SL}_{2}(\mathbb{R})$ and H be any of 1 D subgroups A, N or K. A right inverse s to the natural projection $p: G \rightarrow G / H$:
$s:(u, v) \mapsto \frac{1}{\sqrt{v}}\left(\begin{array}{cc}v & u \\ 0 & 1\end{array}\right), \quad(u, v) \in \mathbb{R}^{2}$, in the diagram

defines the G-action $g \cdot x=p(g \cdot s(x))$ on the homogeneous space G / H :

$$
\left(\begin{array}{ll}
a & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right):(\mathrm{u}, v) \mapsto\left(\frac{(\mathrm{au}+\mathrm{b})(\mathrm{cu}+\mathrm{d})-\sigma \mathrm{cav} v^{2}}{(\mathrm{cu}+\mathrm{d})^{2}-\sigma(\mathrm{cv})^{2}}, \frac{v}{(\mathrm{cu}+\mathrm{d})^{2}-\sigma(\mathrm{cv})^{2}}\right) .
$$

This becomes a Möbius map in (hyper)complex numbers: ${ }^{1}$

$$
\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right): w \mapsto \frac{\mathrm{a} w+\mathrm{b}}{\mathrm{c} w+\mathrm{d}}, \quad w=\mathrm{u}+\mathrm{i} v, \quad \mathrm{i}^{2}(:=\sigma)=-1,0,1 .
$$

Actions of $\mathrm{SL}_{2}(\mathbf{R}), 2012$.

Structural Equivalence Principle

During this course we will see many illustrations to the following: Structural Equivalence Principle-SEP:
The structure of the group $\mathrm{SL}_{2}(\mathbb{R})$ and its representations are interchangeable by simultaneous choice of one-dimensional subgroup K , N^{\prime} or A^{\prime} and the corresponding hypercomplex unit i, ε or j, see Table 1.

Case:	elliptic	parabolic	hyperbolic
Numbers	complex	dual	double
Subgroup H	K	N	A
$\sigma=\iota^{2}$	-1	0	1

Table: Correspondence between components of the construction

Möbius Transformations of \mathbb{R}^{2}

For all numbers define Möbius' transformation of $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, (in elliptic and parabolic cases this is even $\mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2}$!):

$$
\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \tag{5}\\
\mathrm{c} & \mathrm{~d}
\end{array}\right): u+\mathrm{i} v \mapsto \frac{\mathrm{a}(\mathrm{u}+\mathrm{i} v)+\mathrm{b}}{\mathrm{c}(\mathrm{u}+\mathrm{i} v)+\mathrm{d}} .
$$

Product $\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right)=\left(\begin{array}{cc}\tau & 0 \\ 0 & \tau^{-1}\end{array}\right)\left(\begin{array}{ll}1 & v \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right)$ gives Iwasawa $\mathrm{SL}_{2}(\mathbb{R})=A N K$. In all \mathbb{A} subgroups A and N acts uniformly:

Möbius Transformations of \mathbb{R}^{2}

For all numbers define Möbius' transformation of $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, (in elliptic and parabolic cases this is even $\mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2}$!):

$$
\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \tag{5}\\
\mathrm{c} & \mathrm{~d}
\end{array}\right): u+\mathrm{i} v \mapsto \frac{\mathrm{a}(\mathrm{u}+\mathrm{i} v)+\mathrm{b}}{\mathrm{c}(\mathrm{u}+\mathrm{i} v)+\mathrm{d}} .
$$

Product $\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right)=\left(\begin{array}{cc}\tau & 0 \\ 0 & \tau^{-1}\end{array}\right)\left(\begin{array}{ll}1 & v \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right)$ gives Iwasawa $\mathrm{SL}_{2}(\mathbb{R})=A N K$. In all \mathbb{A} subgroups A and N acts uniformly:

Möbius Transformations of \mathbb{R}^{2}

For all numbers define Möbius' transformation of $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, (in elliptic and parabolic cases this is even $\mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2}$!):

$$
\left(\begin{array}{ll}
a & b \tag{5}\\
c & d
\end{array}\right): u+i v \mapsto \frac{a(u+i v)+b}{c(u+i v)+d} .
$$

Product $\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right)=\left(\begin{array}{cc}\tau & 0 \\ 0 & \tau^{-1}\end{array}\right)\left(\begin{array}{ll}1 & v \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right)$ gives Iwasawa $\mathrm{SL}_{2}(\mathbb{R})=A N K$. In all \mathbb{A} subgroups A and N acts uniformly:

Vector fields are:

$$
\begin{array}{rll}
\mathrm{dK}_{e}(u, v) & =\left(1+u^{2}-v^{2},\right. & \\
\mathrm{dK}_{\mathrm{p}}(u, v) & =\left(1+u^{2},\right. & 2 u v) \\
d K_{h}(u, v) & =\left(1+u^{2}+v^{2},\right. & 2 u v) \\
d K_{\sigma}(u, v) & =\left(1+u^{2}+\sigma v^{2},\right. & 2 u v)
\end{array}
$$

Figure: Depending from $\mathrm{i}^{2}=\sigma$ the orbits of subgroup K are circles, parabolas and hyperbolas passing $(0, t)$ with the equation $\left(u^{2}-\sigma v^{2}\right)+v\left(\sigma t-t^{-1}\right)+1=\boldsymbol{A}$ This leads to elliptic, parabolic and hyperbolic analytic functions. University of leeds

Vector fields are:

$$
\begin{array}{rll}
\mathrm{dK}_{e}(u, v) & =\left(1+u^{2}-v^{2},\right. & 2 u v) \\
\mathrm{dK}_{\mathrm{p}}(u, v) & =\left(1+u^{2},\right. & 2 u v) \\
d \mathrm{~K}_{\mathrm{h}}(u, v) & =\left(1+u^{2}+v^{2},\right. & 2 u v) \\
d K_{\sigma}(u, v) & =\left(1+u^{2}+\sigma v^{2},\right. & 2 u v)
\end{array}
$$

Figure: Depending from $\mathrm{i}^{2}=\sigma$ the orbits of subgroup K are circles, parabolas and hyperbolas passing $(0, t)$ with the equation $\left(u^{2}-\sigma v^{2}\right)+v\left(\sigma t-t^{-1}\right)+1=\square$ This leads to elliptic, parabolic and hyperbolic analytic functions. unversity of leeds

Fix subgroups of i, ε and j

Fix subgroups of $\iota=(0,1)$ are $S(t)=\exp \left(\begin{array}{cc}0 & \sigma t \\ t & 0\end{array}\right)$, where $\sigma=\iota_{\text {university of Leeds }}^{2}$.

Compactification of \mathbb{R}^{e} and \mathbb{R}^{p}

Compactification of \mathbb{R}^{h}

Figure: Hyperbolic counterpart of the Riemann sphere (incomplete so far!) Ideal elements for the light cone at infinity.
In all EPH cases ideal points comprise the corresponding zero-radius cycle at A infinity.

Induced Representations

Let G be a group, H its closed subgroup, χ be a linear representation of H in a space V . The set of V -valued functions with the property

$$
F(g h)=\chi(h) F(g),
$$

is invariant under left shifts.
The restriction of the left regular representation to this space is called an induced representation.
Equivalently we consider the lifting of $f(x), x \in X=G / H$ to $F(g)$:

$$
F(g)=\chi(h) f(p(g)), \quad p: G \rightarrow X, \quad g=s(x) h, \quad p(s(x))=\chi
$$

This is a 1-1 map which transform the left regular representation on G to the following action:

$$
\left[\rho^{\prime}(g) f\right](x)=\chi(h) f(g \cdot x), \quad \text { where } \quad g s(x)=s(g \cdot x) h
$$

In the case of $\mathrm{SL}_{2}(\mathbb{R})$ we have three different types of actions. university of lebs

Characters and transformations of \mathbb{R}^{2}

Multiplication by an unimodular complex number is an orthogonal rotation of \mathbb{R}^{2}. Multiplication by unimodular dual and double numbers can be viewed as parabolic and hyperbolic rotations ${ }^{2}$ preserving the area (i.e. the symplectic form). They induce some representations as well.

Affine Group

For $\mathrm{G}=\mathrm{SL}_{2}(\mathbb{R})$ and $\mathrm{H}=\mathrm{F}$ the action on G / H is:

$$
\mathrm{g}: \mathrm{u} \mapsto \mathrm{p}\left(\mathrm{~g}^{-1} * \mathrm{~s}(\mathrm{u})\right)=\frac{\mathrm{au}+\mathrm{b}}{\mathrm{cu}+\mathrm{d}}, \quad \text { where } \mathrm{g}^{-1}=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) .
$$

We calculate also that

$$
r\left(\mathrm{~g}^{-1} * \mathrm{~s}(\mathrm{u})\right)=\left(\begin{array}{cc}
(\mathrm{cu}+\mathrm{d})^{-1} & 0 \\
\mathrm{c} & \mathrm{cu}+\mathrm{d}
\end{array}\right) .
$$

A generic character of F is a power of its diagonal element:

$$
\rho_{\kappa}\left(\begin{array}{cc}
a & 0 \\
c & a^{-1}
\end{array}\right)=a^{\kappa} .
$$

Thus the corresponding realisation of induced representation is:

$$
\rho_{\kappa}(g): f(u) \mapsto \frac{1}{(c u+d)^{\kappa}} f\left(\frac{a u+b}{c u+d}\right)
$$

$$
\text { where } \mathrm{g}^{-1}=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \cdot \text { (6) }
$$

Induced Wavelet Transform

Let $v_{0} \in \mathcal{H}$ be an eigenfunction as follows:

$$
\rho(h) v_{0}=\tilde{\chi}(h) \cdot v_{0}, \quad \text { for all } h \in \tilde{H}
$$

It is suitable to be the mother wavelet (vacuum vector). Then we have

$$
\begin{aligned}
{[\mathcal{W f}](\mathrm{gh}) } & =\left\langle\mathrm{f}, \rho(\mathrm{gh}) v_{0}\right\rangle=\left\langle\mathrm{f}, \rho(\mathrm{~g}) \rho(\mathrm{h}) v_{0}\right\rangle \\
& =\left\langle\mathrm{f}, \tilde{\chi}(\mathrm{~h}) \cdot \rho(\mathrm{g}) v_{0}\right\rangle=\tilde{\chi}\left(\mathrm{h}^{-1}\right)\left\langle\mathrm{f}, \rho(\mathrm{~g}) v_{0}\right\rangle
\end{aligned}
$$

For v_{0} the induced wavelet transform $\mathcal{W}: \mathcal{H} \rightarrow \mathrm{L}_{\infty}(\mathrm{G} / \tilde{\mathrm{H}})$ by

$$
\begin{equation*}
[\mathcal{W} f](w)=\left\langle f, \rho_{0}(s(w)) v_{0}\right\rangle \tag{7}
\end{equation*}
$$

where $w \in \mathrm{G} / \tilde{\mathrm{H}}$ and $s: \mathrm{G} / \tilde{\mathrm{H}} \rightarrow \mathrm{G}$.
It intertwines ρ with a representation induced by $\tilde{\chi}^{-1}$ of \tilde{H}.
Particularly, it intertwines ρ with the representation associated to G-action on the homogeneous space G / H.

Lie algebra

and derived representation
The Lie algebra $\mathfrak{s l}_{2}$ of $\mathrm{SL}_{2}(\mathbb{R})$ consists of all 2×2 real matrices of trace zero. One can introduce a basis:

$$
A=\frac{1}{2}\left(\begin{array}{cc}
-1 & 0 \tag{8}\\
0 & 1
\end{array}\right), \quad B=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

The commutator relations are

$$
[Z, A]=2 B, \quad[Z, B]=-2 A, \quad[A, B]=-\frac{1}{2} Z
$$

The derived representation for a vector field $Y \in \mathfrak{s l}_{2}$ is defined through the exponential map $\exp : \mathfrak{s l}_{2} \rightarrow \mathrm{SL}_{2}(\mathbb{R})$ by the standard formula:

$$
\begin{equation*}
d \rho^{\mathrm{Y}}=\left.\frac{\mathrm{d}}{\mathrm{dt}} \rho\left(e^{\mathrm{t} Y}\right)\right|_{\mathrm{t}=0} \tag{9}
\end{equation*}
$$

Derived representation

 on the real lineExample 1 (the derived representation of (6)).
For $A=\frac{1}{2}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ we get $\left(e^{t A}\right)^{-1}=e^{-t A}=\left(\begin{array}{cc}e^{t / 2} & 0 \\ 0 & e^{-t / 2}\end{array}\right)$. Thus:

$$
\begin{aligned}
d \rho^{A} f(u) & =\left.\frac{d}{d t}\left[\rho\left(e^{t A}\right) f\right](u)\right|_{t=0}=\left.\frac{d}{d t}\left[\frac{1}{e^{-k t / 2}} f\left(e^{t} u\right)\right]\right|_{t=0} \\
& =\frac{k}{2} f(u)+u f^{\prime}(u)
\end{aligned}
$$

Similarly, for the basis (8) of $\mathfrak{s l}_{2}$ the derived representation of (6) is:

$$
\begin{align*}
\mathrm{d} \rho_{\mathrm{k}}^{\mathrm{A}} & =\frac{\kappa}{2} \cdot \mathrm{I}+\mathbf{u} \cdot \partial_{\mathfrak{u}}, \tag{10}\\
\mathrm{d} \rho_{\mathrm{k}}^{\mathrm{B}} & =\frac{\kappa}{2} \mathbf{u} \cdot \mathrm{I}+\frac{1}{2}\left(\mathbf{u}^{2}-1\right) \cdot \partial_{\mathfrak{u}}, \tag{11}\\
\mathrm{d} \rho_{\mathrm{k}}^{Z} & =-\kappa \mathbf{u} \cdot \mathrm{I}-\left(\mathbf{u}^{2}+1\right) \cdot \partial_{\mathfrak{u}}
\end{align*}
$$

Cauchy-Riemann Equation

from Invariant Fields

Let ρ be a unitary representation of Lie group G with the derived representation $d \rho$ of \mathfrak{g}. Let a mother wavelet w_{0} be a null-solution, i.e. $A w_{0}=0$, for the operator $A=\sum_{J} a_{j} d \rho^{X_{j}}$, where $X_{j} \in \mathfrak{g}$. Then the wavelet transform $F(g)=\mathcal{W} f(g)=\left\langle f, \rho(g) \mathcal{w}_{0}\right\rangle$ for any f satisfies to:

$$
\operatorname{DF}(g)=0, \quad \text { where } \quad D=\sum_{j} a_{j} \mathfrak{L}^{X_{j}} .
$$

Here $\mathfrak{L}^{X_{j}}$ are left the invariant fields (Lie derivatives) on G corresponding to X_{j}.
If $\mathfrak{L}^{X_{j}}$ is derived representation of Lie derivative A, N, K (without the matching subgroup) then C-R operator and Laplacian are given by:

$$
\begin{equation*}
\mathrm{D}=\mathfrak{L}^{\mathfrak{A}}+\mathfrak{L}^{\mathrm{X}}, \quad \text { and } \quad \Delta=\mathrm{D} \overline{\mathrm{D}}=-\sigma \mathfrak{L}^{\mathcal{A}^{2}}+\mathfrak{L}^{\mathrm{X}^{2}} \tag{13}
\end{equation*}
$$

where X is in the orthogonal complement (with respect to the Killing form) of the corresponding subgroup $\mathrm{K}, \mathrm{N}, \mathrm{A}$.

Cauchy-Riemann Equation

Example

Consider the representation ρ

$$
\rho_{2}(g): f(u) \mapsto \frac{1}{(c u+d)^{2}} f\left(\frac{a u+b}{c u+d}\right) \quad \text { where } g^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Let A and $N \in \mathfrak{s l}_{2}$ generates $\left(\begin{array}{cc}e^{\mathfrak{t} / 2} & 0 \\ 0 & e^{-t / 2}\end{array}\right)$ and $\left(\begin{array}{ll}1 & \mathfrak{t} \\ 0 & 1\end{array}\right)$. Then the derived representations are:

$$
\left[d \rho^{A} f\right](x)=f(x)+x f^{\prime}(x), \quad\left[d \rho^{N} f\right](x)=f^{\prime}(x)
$$

The corresponding left invariant vector fields on upper half-plane are:

$$
\mathfrak{L}^{\mathrm{A}}=a \partial_{\mathrm{a}}, \quad \mathfrak{L}^{\mathrm{N}}=a \partial_{\mathrm{b}} .
$$

The mother wavelet $\frac{1}{x+i}$ is a null solution of the operator $\mathrm{d} \rho^{\mathrm{A}}+\mathrm{id} \rho^{\mathrm{N}}=\mathrm{I}+(\mathrm{x}+\mathrm{i}) \frac{\mathrm{d}}{\mathrm{d} \chi}$. Therefore the wavelet transform will consist of the null solutions to the operator $\mathfrak{L}^{A}-i \mathfrak{L}^{N}=a\left(\partial_{a}+i \partial_{b}\right)$ - the Cauchy-Riemann operator.

Cauchy Integral Formula

Eigenvector of K

The infinitesimal version of the eigenvector property $\rho(h) v_{0}=\chi(h) \cdot v_{0}$ is $\mathrm{d} \rho_{\mathrm{n}}^{\mathrm{Z}} \nu_{0}=\lambda \nu_{0}$, explicitly, cf. (12)

$$
\operatorname{nuf}(u)+f^{\prime}(u)\left(1+u^{2}\right)=\lambda f(u)
$$

The generic solution is:

$$
f(u)=\frac{1}{\left(1+u^{2}\right)^{n / 2}}\left(\frac{u+i}{u-i}\right)^{i \lambda / 2}=\frac{(u+i)^{(i \lambda-n) / 2}}{(u-i)^{(i \lambda+n) / 2}} .
$$

To avoid multivalent function we need to put $\lambda=\mathrm{im}$ with an integer m . The Cauchy-Riemann condition (which turn to be later the same as "the minimal weight condition") suggests $m=n$. Thus, the induced wavelet transform is:

$$
\hat{f}(x, y)=\left\langle f, \rho_{n} f_{0}\right\rangle=\int_{\mathbb{R}} f(u) \frac{\sqrt{y}}{u-x-i y} d x=\sqrt{y} \int_{\mathbb{R}} f(u) \frac{d x}{u-(x+i y)}
$$

And its image consists of null solutions of Cauchy-Riemann type equations. For $\mathrm{m}>\mathrm{n}$ we obtain polyanalytic functions annihilated by powers of Cauchy-Riemann operator.

Fix Subgroups of i and j

Figure: Elliptic and hyperbolic fix groups of the imaginary units. In the hyperbolic case there are fixed geometric sets: $\{-1,1\},(-1,1), \mathbb{R}$.

Other Integral Transforms

Eigenvalues of A

For the subgroup A^{\prime} generated by $B \in \mathfrak{s l}_{2}$ the derived representation, cf. (11):

$$
d \rho_{n}^{B} f(u)=-n u f(u)+\left(u^{2}-1\right) f^{\prime}(u)
$$

It has two singular point ± 1, its solution has compact support $[-1,1]$.

$$
\begin{aligned}
f(x) & =\frac{1}{\left(u^{2}-1\right)^{n / 2}}\left(\frac{u+1}{u-1}\right)^{\lambda / 2} \\
& =\frac{(u+1)^{(\lambda-n) / 2}}{(u-1)^{(\lambda+n) / 2}}
\end{aligned}
$$

For $\lambda=\mathrm{jm}$ we also get, cf. K-case:

$$
f(x)=\frac{(x+j)^{(m-k) / 2}}{(x-j)^{(m+\kappa) / 2}}
$$

Hyperbolic Wavelets from Double Numbers

The choice of the A-eigenvector as mother wavelet:

- $f_{0}=\delta(x \pm 1)$-Dirichlet condition.
- $f_{0}=\frac{1}{(x-j)^{\sigma}}=\left(\frac{x+j}{x^{2}-1}\right)^{\sigma}-$ Neumann condition.
- $\mathrm{f}_{0}=\frac{\chi\left(1-x^{2}\right)}{(x-j)^{\sigma}}$-space-like and time-like separation, Fig. 4.
- ... (combination of above)

Then we follow the general scheme both for wavelets with complex and double valued wavelets:

- wavelets or coherent states $v_{\sigma}(\mathrm{g}, z)=\rho_{\sigma}(\mathrm{g}) v_{0}(z)$.
- d'Alambert integral from the universal wavelet transforms

$$
\mathcal{W}_{\sigma}: f(z) \mapsto \mathcal{W}_{\sigma} f(u)=\left\langle f(z), \rho_{\sigma} v_{0}(u, z)\right\rangle
$$

Other Integral Transforms

Eigenvalues of N
The subgroup N consists of shifts, the eigenfunction is $e^{\lambda u}$ and the induced wavelet transform coincides with the Fourier transform. For the subgroup N^{\prime}, the generator is $d \rho_{n}^{Z / 2-B}=(u n) \cdot I-u^{2} \cdot \partial_{u}$, cf. (11-12). The eigenvector $d \rho_{n}^{Z / 2-B} f=\lambda f$ is $f_{0}(u)=u^{n} e^{\frac{\lambda}{u}}$.
Consider some identities for dual numbers:

$$
e^{\varepsilon \alpha t}=1+\varepsilon \alpha t ; \quad(t \pm \varepsilon)^{\alpha}=t^{\alpha-1}(t \pm \varepsilon \alpha) ; \quad(t-\varepsilon)(t+\varepsilon)=t^{2}
$$

Combining them together we can write for $\lambda=\varepsilon \mathrm{m}$:

$$
e^{\frac{\varepsilon m}{u}}=1+\frac{\varepsilon m}{u}=\left(\frac{u+\varepsilon}{u-\varepsilon}\right)^{m / 2}
$$

Then the solution $f_{0}(u)=u^{n} e^{\frac{\lambda}{u}}$ is:

$$
\begin{equation*}
|u|^{-\kappa} e^{-\frac{\varepsilon m}{u}}=\frac{1}{((u+\varepsilon)(u-\varepsilon))^{\kappa / 2}}\left(\frac{u+\varepsilon}{u-\varepsilon}\right)^{m / 2}=\frac{(u+\varepsilon)^{(m-k) / 2}}{(u-\varepsilon)^{(m+k) / 2}} \tag{14}
\end{equation*}
$$

The respective wavelet transform is again very similar to the complex case.

Raising/Lowering Operators

Denote $\tilde{X}=d \rho(X)$ for $X \in \mathfrak{s l}_{2}$. Let $X=Z$ be the generator of the compact subgroup K, eigenspaces $\tilde{Z} v_{k}=i k v_{k}$ are parametrised by an integer $k \in \mathbb{Z}$. The raising/lowering operators $\mathrm{L}_{ \pm}$:

$$
\begin{equation*}
\left[\tilde{\mathrm{Z}}, \mathrm{~L}_{ \pm}\right]=\lambda_{ \pm} \mathrm{L}_{ \pm} \tag{15}
\end{equation*}
$$

[$\mathrm{L}_{ \pm}$are eigenvectors for operators ad Z of adjoint representation of $\mathfrak{s l}_{2}$.] From the commutators (15) $\mathrm{L}_{+} \nu_{\mathrm{k}}$ are eigenvectors of \tilde{Z} as well:

$$
\begin{aligned}
\tilde{Z}\left(\mathrm{~L}_{+} v_{\mathrm{k}}\right) & =\left(\mathrm{L}_{+} \tilde{\mathrm{Z}}+\lambda_{+} \mathrm{L}_{+}\right) v_{\mathrm{k}}=\mathrm{L}_{+}\left(\tilde{\mathrm{Z}} v_{\mathrm{k}}\right)+\lambda_{+} \mathrm{L}_{+} v_{\mathrm{k}} \\
& =\mathrm{ikL} \mathrm{~L}_{+} v_{\mathrm{k}}+\lambda_{+} \mathrm{L}_{+} v_{\mathrm{k}}=\left(\mathrm{ik}+\lambda_{+}\right) \mathrm{L}_{+} v_{\mathrm{k}}
\end{aligned}
$$

Thus those operators acts on a chain of eigenspaces:

$$
\ldots \underset{\mathrm{L}_{-}}{\stackrel{\mathrm{L}_{+}}{\rightleftarrows}} \mathrm{V}_{\mathrm{ik}-\lambda} \lambda \underset{\mathrm{L}_{-}}{\stackrel{\mathrm{L}_{+}}{\rightleftarrows}} \mathrm{V}_{\mathrm{ik}} \stackrel{\mathrm{~L}_{+}}{\underset{\mathrm{L}_{-}}{\rightleftarrows}} \mathrm{V}_{\mathrm{ik}+\lambda} \underset{\mathrm{L}_{-}}{\stackrel{\mathrm{L}_{+}}{\rightleftarrows}} \ldots
$$

Finding Raising/Lowering Operators

Elliptic and hyperbolic
Subgroup K. Assuming $L_{+}=a \tilde{A}+b \tilde{B}+c \tilde{Z}$ we obtain a linear equation:

$$
c=0, \quad 2 a=\lambda_{+} b, \quad-2 b=\lambda_{+} a .
$$

The equations have a solution if and only if $\lambda_{+}^{2}+4=0$, and the raising operator is $\mathrm{L}_{+}=\mathrm{i} \tilde{A}+\tilde{B}$.
Subgroup A. For the commutator $\left[\tilde{B}, L_{+}\right]=\lambda L_{+}$we will got the system:

$$
2 \mathrm{c}=\lambda \mathrm{a}, \quad \mathrm{~b}=0, \quad \frac{\mathrm{a}}{2}=\lambda \mathrm{c} .
$$

A solution exists if and only if $\lambda^{2}=1$. The obvious values $\lambda= \pm 1$ with the operator $L_{ \pm}= \pm \tilde{A}+\tilde{Z} / 2$. Each indecomposable $\mathfrak{s l}_{2}$-module is formed by one-dimensional chain of eigenvalue with transitive action of raising/lowering operators.

Hyperbolic Ladder Operators

Double numbers: $\lambda= \pm \mathrm{j}$ solves $\lambda^{2}=1$ additionally to $\lambda= \pm 1$. The raising/lowering operators $L_{ \pm}^{h}= \pm \mathrm{j} \tilde{\mathcal{A}}+\tilde{Z} / 2$ "orthogonal" to $\mathrm{L}_{ \pm}$.

$$
\begin{aligned}
& L_{j}^{-} \mid \|^{L_{j}^{+}}
\end{aligned}
$$

Parabolic Ladder Operators

A generator $X=-B+Z / 2$ of the subgroup N^{\prime} gets the equations:

$$
\mathrm{b}+2 \mathrm{c}=\lambda \mathrm{a}, \quad-\mathrm{a}=\lambda \mathrm{b}, \quad \frac{\mathrm{a}}{2}=\lambda \mathrm{c}
$$

which can be resolved if and only if $\lambda^{2}=0$. Restricted with the real (complex) root $\lambda=0$ make operators $L_{ \pm}=-\tilde{B}+\tilde{Z} / 2$. Does not affect eigenvalues and thus are useless. However, a dual number $\lambda_{t}=t \varepsilon, t \in \mathbb{R}$ leads to the operator $L_{ \pm}= \pm t \varepsilon \tilde{A}-\tilde{B}+\tilde{B} / 2$, which allow us to build a $\mathfrak{s l}_{2}$-modules with a one-dimensional continuous(!) chain of eigenvalues.

K Introduction of complex numbers is a necessity for the existence of raising/lowering operators;
N we need dual numbers to make raising/lowering operators useful;
A double number are required for neither existence nor usability of raising/lowering operators, but do provide an enhancement.

Similarity and Correspondence

Principle of Similarity and correspondence

(1) Subgroups K, N and A play the similar role in a structure of the group $\mathrm{SL}_{2}(\mathbb{R})$ and its representations.
(2) The subgroups shall be swapped together with the respective replacement of hypercomplex unit ι.

Manifestations:

- The action of $\mathrm{SL}_{2}(\mathbb{R})$ on $\mathrm{SL}_{2}(\mathbb{R}) / \mathrm{H}$ for $\mathrm{H}=A^{\prime}, \mathrm{N}^{\prime}$ or K and linear-fractional transformations of respective numbers.
- Subgroups K, N^{\prime} and A^{\prime} and unitary rotations of respective unit cycles.
- Representations induced from subgroup K, N^{\prime} or A^{\prime} and unitarity in respective numbers.
- The connection between raising/lowering operators for subgroups K, N^{\prime} or A^{\prime} and corresponding numbers.

Bibliography I

V. V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $\mathrm{SL}_{2}(\mathbf{R})$. Includes a live DVD. Zbl1254.30001. London: Imperial College Press, 2012.
I. M. Yaglom. A Simple Non-Euclidean Geometry and Its Physical Basis. Heidelberg Science Library. Translated from the Russian by Abe Shenitzer, with the editorial assistance of Basil Gordon. New York: Springer-Verlag, 1979, pp. xviii +307 .

