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Chapter 4. Surface Tension and Equilibrium

Tensions and Geometry

0 =
∂

∂s
(σmr) + σc sin θ − wr cos θ

(1)
∂

∂s
(σmr) = −σc sin θ + wr cos θ.

Dotting with n̄ gives (using ∂t/∂s = −θ′n̄)

0 =
∂

∂s
(σmrt) · n̄− σce1 · n̄ + pr n̄ · n̄− wrk · n̄

0 = −σmrθ′ − σc cos θ + pr − wr sin θ (2)

σmrθ
′ = pr − σc cos θ − wr sin θ.
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Mylar Balloon and Elastic Curves

This is another case in which the system of equations (1) and (2)
can be solved up to the very end. Assuming that w(s) = σc = 0
and that the hydrostatic pressure p(s) = po is a constant (and
non-zero), this system reduces to the equations

(σm(s)r(s))
dθ(s)

ds
= por(s) (3)

d(σm(s)r(s))

ds
= 0. (4)
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Mylar Balloon and Elastic Curves

The second equation above tells us that σm(s)r(s) is a constant
quantity and therefore we can introduce the meridional stress
resultant σ̊ on the equator of the balloon, i.e., the points for which
r(s) = a, z(s) = 0 and rewrite the above integral in the form

σm(s) =
aσ̊

r(s)
· (5)

This allows us also to rewrite the first equation (3) as

dθ(s)

ds
= p̊r(s), p̊ =

po
aσ̊

> 0. (6)
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Mylar Balloon and Elastic Curves

If we combine this equation with

r ′(s) = − sin θ(s), z ′(s) = cos θ(s) (7)

we get the following geometrical relation

r2(s) =
2

p̊
cos θ(s). (8)

This last relation, as we shall see, characterizes uniquely the
surface in question. Let us start with solving (8) for r(s). After
that we replace the result in (6) and in this way obtain a
differential equation with separated variables

dθ√
cos θ

=
√

2p̊ ds. (9)
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Mylar Balloon and Elastic Curves

Next we introduce η = sin θ, which transforms the left hand side
into

dη√
η(1− η2)

and this suggest a new change η = ζ2 of the independent variable
η, which gives

dη√
η(1− η2)

=
2dζ√
1− ζ4

=
2dζ√

(1 + ζ2)(1− ζ2)
·

By all these changes equation (9) reduces to the form

2dζ√
(1 + ζ2)(1− ζ2)

=
√

2p̊ ds. (10)
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Mylar Balloon and Elastic Curves

However, this is a standard elliptic integral (see Jahnke et al
[1960]), which can be inverted directly in Jacobi’s eliptic functions
cn, and we have

ζ(s) = −cn
(√

p̊s,
1√
2

)
.

As a consequence we have also

sin θ(s) =
p̊

2
r2(s) = ζ2(s) = cn2

(√
p̊s,

1√
2

)
(11)

and therefore

r(s) =

√
2

p̊
cn

(√
p̊s,

1√
2

)
. (12)

I. Mladenov & M.Hadzhilazova The Many Faces of Elastica



Chapter 4. Surface Tension and Equilibrium

Mylar Balloon and Elastic Curves

In order to find z(s) we make use of

dz

dr
= − tan θ = − p̊r2 + 2C√

(c2 − r2)(r2 − a2)
(13)

and (11) which lead to

dz(s)

ds
= −cn2

(√
p̊s,

1√
2

)
. (14)

Details about the integration of the above equation can be found
in Hadzhilazova & Mladenov [2006], and the result is

z(s) = − 2√
p̊

[
E

(
am

(√
p̊s,

1√
2

)
,

1√
2

)
− 1

2
F

(
am

(√
p̊s,

1√
2

)
,

1√
2

)]
.

(15)
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Mylar Balloon and Elastic Curves

If we compare the obtained parametrization of the profile curve
(r(s), z(s)) provided by (12) and (15) with that one in Mladenov
& Oprea [2003] we can easily conclude that we are dealing here
with the Mylar balloon. The profile curve and the surface
generated by them are shown in Fig. 1 and Fig. 2.

Figure: The profile of the
mylar balloon in XOZ plane.

Figure: An open part of the mylar
balloon.

I. Mladenov & M.Hadzhilazova The Many Faces of Elastica



Chapter 4. Surface Tension and Equilibrium

Mylar Balloon and Elastic Curves.

For commercial purposes the just mentioned Mylar balloon is
fabricated from two circular disks of mylar, sewing them along
their boundaries and then inflating. Surprisingly enough, these
balloons are not spherical as one naively might expect from the
well-known fact that the sphere possesses the maximal volume for
a given surface area. An experimental fact like this suggests a
mathematical problem regarding the exact shape of the balloon
when it is fully inflated.
This problem was first spelled out by Paulsen [1994] in a variational
setting while here we have provided in fact its non-variational
characterization. One should mention also the remarkable scale
invariance (i.e., independence of the actual size) of the thickness
to diameter ratio of the inflated balloon which turns out to be with
a good approximation equal to 0.599 (see Mladenov [2002a]).
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Mylar Balloon and Elastic Curves.

Another important fact about this surface is the very simple
expression for its area given by the formula A = π2a2, where a is
the radius of the inflated balloon.In some sense all these nice
properties are due to the remarkable property which specifies
uniquely the mylar balloon as the only surface of revolution for
which the principal curvatures kµ and kπ obey to the equation

kµ = 2kπ. (16)

As has been noticed by Gibbons [2006] this (Weingarten) property
can be derived within membrane approach as well by rewriting (8)
in the form

−p̊r(s) = −2
cos θ(s)

r(s)
· (17)
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Mylar Balloon and Elastic Curves.

Taking into account (6) along with the definitions of the principal
curvatures given in

kµ =
g ′′h′ − g ′h′′

(g ′2 + h′2)3/2
, kπ =

g ′

h(g ′2 + h′2)1/2
· (18)

amounts directly to the equality (16).
Bending Energy
When one consider the elastic properties of the materials the main
question is: What is the energy needed to bend a rod in the plane?
According to the theory of elasticity (see Love [1944]) the energy is
proportional to the integral of the squared curvature along its
length

U =

∫ L

0

EI

R2
ds (19)

where U is the bending energy, E is the Young’s module of
elasticity, I is the moment about the neutral axis, R is the
curvature radius of the neutral axis, and L is its lenght.
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Mylar Balloon and Elastic Curves.
Bending Energy

Its study was initiated by James Bernoulli in 1691 who had tried to
develop this model by using the available mechanics, geometry and
variational calculus and this approach has been continued in
Euler’s book [1744], which lays down the basis of the modern
variational calculus.
There he examines the problem of finding the shape of an elastic
ribbon with a fixed length L, which connects two points in the
plane at which it has fixed tangents (see Fig. 3). We assume that
the origin O of the coordinate system XOZ coincides with one of
the points and that the other has coordinates (x , z).
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Mylar Balloon and Elastic Curves.
Bending Energy

Figure: Some possible positions of the ribbon when it is free - on the left
and with a fixed length - on the right.
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Mylar Balloon and Elastic Curves.
Bending Energy

Now our task is to find the minimum of the functional

J0 =

∫ L

0
κ2(s) (20)

under the condition of a fixed length∫ L

0
ds = L. (21)

Bernoulli and Euler make use of the equation (??) and respectively
J0 reads ∫

z̈2(x)

(1 + ż2)5/2
dx , ż =

dz

dx
, z̈ =

d2z

dx2
· (22)
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Mylar Balloon and Elastic Curves.
Bending Energy

Despite that in this case the Euler-Lagrange equation is of fourth
order, Euler managed to integrate it three times and to find the
first order equation

dz

dx
=

a2 − c2 + x2√
(c2 − x2)(2a2 − c2 + x2)

, a, c ∈ R. (23)

From this point on his considerations were qualitative (the elliptic
fuctions were not invented yet!) and the solutions of (23) were
classified according to the different values of the real parameter

m =
a2

2c2
· (24)

In the next section we will expose the above result by following the
original Euler’s method.
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Mylar Balloon and Elastic Curves.
Original Formulation and Treatment of the Problem About
Elastic Curves

In this section we will consider the original method of Euler, which
aims the integration of the equation that describes the elasticas.
As mentioned before it is a nonlinear fourth order ordinary
differential equation.
Let us start by writing the arc length ds in the form

ds = (dx2 + dz2)1/2 = (dx2 + ż2dx2)1/2 = (1 + ż2)1/2dx (25)

and for the full functional J we can write respectively

J =

∫
z̈2dx

(1 + ż2)5/2
+ λ

∫
(1 + ż2)1/2dx .
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Mylar Balloon and Elastic Curves.
Original Formulation and Treatment of the Problem About
Elastic Curves

The Euler-Lagrange equation is

d2

dx2
(
∂F

∂z̈
)− d

dx
(
∂F

∂ż
) +

∂F

∂z
= 0

and in our case it is

d2

dx2
(2z̈(1+ ż2)−5/2)+

d

dx
(5z̈2ż(1+ ż2)−7/2−λż(1+ ż2)−1/2) = 0.

Integrating once the last equation we have

d

dx
(2z̈(1 + ż2)−5/2) + 5z̈2ż(1 + ż2)−7/2 − λż(1 + ż2)−1/2 = A

where A is an integration constant. Performing the differentiation
in the above formula we have

2
...
z (1 + ż2)−5/2 − 5z̈2ż(1 + ż2)−7/2 + λż(1 + ż2)−1/2 = A. (26)
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Mylar Balloon and Elastic Curves.
Original Formulation and Treatment of the Problem About
Elastic Curves

In this equation we can rewrite 2
...
z which appears in the first term

as

2
...
z = 2z̈

dz̈

dż
=

dz̈2

dż
the second one as

z̈2
d

dż
(1 + ż2)−5/2

and the third one as

−λ d

dż
(1 + ż2)1/2·

Doing so the equation (26) transforms in to the form

(1 + ż2)−5/2
dz̈2

dż
+ z̈2

d

dż
(1 + ż2)−5/2 − λ d

dż
(1 + ż2)1/2 = A.
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Mylar Balloon and Elastic Curves.
Original Formulation and Treatment of the Problem About
Elastic Curves

Now, we can unify the first two terms in the last equation to obtain

d

dż
(z̈2(1 + ż2)−5/2)− d

dż
(λ(1 + ż2)1/2) = A. (27)

After a direct integration of (27) we get

z̈2(1 + ż2)−5/2 = λ(1 + ż2)1/2 + Aż + B (28)

where B is the new integration constant.
Solving the last equation for z̈ yields

z̈ =
dż

dx
= (1 + ż2)5/4

(
λ(1 + ż2)1/2 + Aż + B

)1/2
. (29)
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Mylar Balloon and Elastic Curves.
Original Formulation and Treatment of the Problem About
Elastic Curves

A crucial moment is the observation (due to Euler) that

d

dż

(
2(λ(1 + ż2)1/2 + Aż + B)1/2)

(1 + ż2)1/4

)
=

A− Bż

(1 + ż2)5/4
(
λ(1 + ż2)1/2 + Aż + B

)1/2
and taking into account (29) we end up with

d

dż

(
2
(
λ(1 + ż2)1/2 + Aż + B)1/2

)
(1 + ż2)1/4

)
= (A− Bż)

dx

dż
. (30)

The integration of the above equation is immediate and produces

2(λ(1 + ż2)1/2 + Aż + B)1/2)

(1 + ż2)1/4
= Ax − Bz + C (31)

where C is the integration constant.
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Mylar Balloon and Elastic Curves.
Original Formulation and Treatment of the Problem About
Elastic Curves

By making a special choice for the constants B and C , i.e., B = C = 0
and solving the so reduced equation (31) for ż we obtain the equation

ż(x) =
A2x2 − 4λ√

16A2 − (A2x2 − 4λ)2
· (32)

At this stage it is convenient to introduce the real numbers a and c as
new parameters via the relations

a4 =
16

A2
and c2 − a2 =

4λ

A2
(33)

and in this way to convert (32) into

dz

dx
=

a2 − c2 + x2√
(c2 − x2)(2a2 − c2 + x2)

which is exactly the Eulerian equation (23).
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Mylar Balloon and Elastic Curves.
Original Formulation and Treatment of the Problem About
Elastic Curves

Alternatively, recalling the formula for the curvature

κ(x) =
z̈

(1 + ż2)3/2

we can transform equation (28) into the form

κ2 = A
ż√

1 + ż2
+

B√
1 + ż2

+ λ. (34)

According to Fig. ?? one has ż =
dz

dx
= tanψ, where ψ = ψ(x) is the

angle between the tangent at this point and the positive direction of OX
axis and hence the equation (34) becomes

κ2 = A sinψ + B cosψ + λ.

I. Mladenov & M.Hadzhilazova The Many Faces of Elastica



Chapter 4. Surface Tension and Equilibrium

Mylar Balloon and Elastic Curves.
Original Formulation and Treatment of the Problem About
Elastic Curves

Differentiating this equality with respect to the arclength s (which we will
denote with a prime) give us

2κκ′ = A cosψψ′ − B sinψψ′. (35)

By its very definition

κ =
dψ

ds
= ψ′

and therefore we have the equation

2κ′ = A cosψ − B sinψ (36)

in which for the left hand side we can write

κ′ =
dκ

ds
=

dκ

dx

dx

ds
=

1√
1 + ż2

dκ

dx
=

κ̇√
1 + ż2

·
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Mylar Balloon and Elastic Curves.
Original Formulation and Treatment of the Problem About
Elastic Curves

In Cartesian coordinates (36) becomes

2κ̇√
1 + ż2

=
A√

1 + ż2
− Bż√

1 + ż2

which obviously is equivalent to the equation

2κ̇ = A− Bż .

Integrating the above relation we get the equation of the Eulerian
elasticas

κ(x , z) =
A

2
x − B

2
z + C , C = const (37)

which tells us that elasticas are curves which curvatures are linear
functions of the Cartesian coordinates.
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Mylar Balloon and Elastic Curves.
Original Formulation and Treatment of the Problem About
Elastic Curves

If we take as the ordinate the line

Bx + Az + D = 0

and for abscissa the perpendicular one

Ax − Bz + 2C = 0

then the expression for the curvature of the elasticas (37) transforms into

κ(x) = αx , α ∈ R (38)

where we have used the same notation for the new quantities.
Remark. One can check the compatibility of the approaches presented
above by evaluating the curvature using (23) which gives (modulo some
calculations) the expected formula

κ(x) =
2

a2
x . (39)
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Mylar Balloon and Elastic Curves.
Parametric Representation of Curvature of Elastica

According to the alternative formula κ(s) =
√

x′′ · x′′ = (x2ss + z2ss)1/2. for
the curvature of plane curves, the Euler’s elasticas problem reduces to
the study of the functional

J =

∫
(ẍ2 + z̈2 + ν(s)(ẋ2 + ż2))ds.

The over dot here means a differentiation with respect of the natural
parameter. Respectively, the Euler-Lagrange’s equations

d2

dt2
∂F

∂ẍ
− d

dt

∂F

∂ẋ
+
∂F

∂x
= 0

d2

dt2
∂F

∂z̈
− d

dt

∂F

∂ż
+
∂F

∂z
= 0.

in this case reduces to the system

d2ẍ

ds2
− d

ds
(νẋ) = 0,

d2z̈

ds2
− d

ds
(νż) = 0

which can be rewritten in their equivalent form

d

ds
(
...
x − νẋ) = 0,

d

ds
(
...
z − νż) = 0.

I. Mladenov & M.Hadzhilazova The Many Faces of Elastica



Chapter 4. Surface Tension and Equilibrium

Mylar Balloon and Elastic Curves.
Parametric Representation of Curvature of Elastica

From the formulas above we can obtain immediately the equations

...
x − νẋ = A,

...
z − νż = B (40)

whereA and B are some integration constants. Multiplying the first
equation with ż , the second with ẋ and subtracting the second result
from the first one we obtain

...
x ż − ẋ

...
z = Aż − Bẋ .

Further, integrating once more give us

ẍ ż − ẋ z̈ = Az − Bx + C .

The left hand side of the above equality can be recognized as the
curvature (see the equation

κ(t) =
ẋ(t)z̈(t)− ẍ(t)ż(t)

(ẋ2(t) + ż2(t))3/2
· (41)

in terms of the natural parameter s.
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Mylar Balloon and Elastic Curves.
Intrinsic Equation of the Elastica

As we know this means to find the equation connecting the curvature κ
and the natural parameter s of the curve. For that purpose we will use
the Frenet-Serret equations

ẋ(s) = T(s), N = T⊥, Ṫ = κN, Ṅ = −κT. (42)

By definition C is an elastic curve when the functional of energy∫
κ2(s)ds has a minimum for a fixed length L =

∫
ds. Let us consider its

infinitesimal deformation defined by the formula

x̃(s) = x(s) + ε(s)N (43)

where ε(s) is an infinitesimal function of the parameter s. Then

˙̃x = ẋ + ε̇N + εṄ = T + ε̇N− εκT = (1− εκ)(T + ε̇N). (44)
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Mylar Balloon and Elastic Curves.
Intrinsic Equation of the Elastica

For the last equation we use the fact that ε.ε̇ is a negligible quantity.
Following the same strategy we have

ds̃ = (dx̃.dx̃)1/2 = ( ˙̃x. ˙̃x)1/2ds

= (1− εκ)[(T + ε̇N).(T + ε̇N)]1/2ds = (1− εκ)ds

and therefore

T̃ =
dx̃

ds̃
=

˙̃xds

ds̃
=

(1− εκ)(T + ε̇N)ds

(1− εκ)ds
= T + ε̇N.

The normal vector Ñ to the deformed curve C̃ is defined by the condition
that it is orthogonal to T̃ and that the (infinitesimal) deformation is
along the direction of N, i.e.,

Ñ = N + λT

where λ is function of s.
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Mylar Balloon and Elastic Curves.
Intrinsic Equation of the Elastica

According to the said above we have

Ñ.T̃ = (N + λT)(T + ε̇N) = λ+ ε̇ = 0

and therefore
Ñ = N− ε̇T.

Imposing the condition that the deformed curve has a fixed length, i.e.,∫
ds̃ =

∫
(1− εκ)ds =

∫
ds

leads to its analytical form presented by the equation∫
εκds = 0.

According to the Frenet-Serret formulas (42) another equation has to be
satisfied as well, i.e.,

dT̃

ds̃
= κ̃Ñ = κ̃(N− ε̇T).
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Mylar Balloon and Elastic Curves.
Intrinsic Equation of the Elastica

The left hand side can be rewritten as

dT̃

ds̃
=

(T + ε̇N)
�
ds

(1− εκ)ds
= (1+εκ)(κN+ ε̈N− ε̇κT) = (κ+ ε̈+εκ2)(N− ε̇T)

which means, that the curvature of the deformed curve is given by the
formula

κ̃ = κ+ εκ2 + ε̈.

Respectively, as C̃ is an extremal we have∫
κ̃2ds̃ + 2σ

∫
ds̃ =

∫
(κ+ εκ2 + ε̈)2(1− εκ)ds + 2σ

∫
(1− εκ)ds

=

∫
κ2ds + 2σ

∫
ds +

∫
(2κε̈+ εκ3)ds − 2σ

∫
εκds

=

∫
κ2ds + 2σ

∫
ds +

∫
(2κ̈+ κ3 − 2σκ)εds.

I. Mladenov & M.Hadzhilazova The Many Faces of Elastica



Chapter 4. Surface Tension and Equilibrium

Mylar Balloon and Elastic Curves.
Intrinsic Equation of the Elastica

In order to obtain the last formula we have integrated twice by parts κε̈.
Because C is an elastic curve the integral

∫
κ2ds has a minimal value for

all deformations which preserve its length
∫
ds and therefore we have the

equation
2κ̈+ κ3 − 2σκ = 0 (45)

where σ is a constant. A direct consequence from the above equation is
that the curve C is a critical point for the elastica’s functional∫

(k2 + 2σ)ds. We are not going to discuss the question which critical
points are minimum and which are not, but we will present another
derivation of equation (45) later on.
Before that in the next section we will apply the so developed variational
techniques to a problem which is quite interesting in both geometrical
and mechanical aspects.
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Mylar Balloon and Elastic Curves.
A Hanging Chain

The potential energy of any infinitesimal element of a homogeneous
freely hanging heavy chain is proportional to the length ds of this
element and its height, i.e.,

dU = zds.

For the entire segment between the points A and B the potential energy
is given by the integral

J =

∫ B

A

zds

and it is assumed that the linear density of the chain mass and the
gravitation constant are equal to one.

I. Mladenov & M.Hadzhilazova The Many Faces of Elastica



Chapter 4. Surface Tension and Equilibrium

Mylar Balloon and Elastic Curves.
A Hanging Chain

Figure: A homogeneous chain in a
gravitational field.

The equilibrium
state of the chain is defined
as the stationary points
of J, i.e., the points for which

δJ = 0 (46)

where δ is the infinitesimal
variation of the functional J.
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Mylar Balloon and Elastic Curves.
A Hanging Chain

Before finding them we will rewrite the results derived in previous section
in an equivalent form, which is more useful in the case under
consideration as follows

δx = ε(s)N(s), δds = −εκds, δT = ε̇N, δN = −ε̇T.

Concerning the equation (46) above we have

δJ =

∫
δzds +

∫
zδds =

∫
ε(s)Nzds −

∫
zεκds

=

∫
ε(s)(Nz − zκ)ds = 0.

As ε(s) is arbitrary function, the last equation is equivalent to

Nz − zκ = 0.
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Mylar Balloon and Elastic Curves.
A Hanging Chain

According to Fig. ??, Nz = cosψ and after dividing by κ and
differentiating with respect to s we have

d

ds
(

cosψ

κ
− z) = − sinψ

κ
ψ̇ − κ̇ cosψ

κ2
− sinψ = 0.

Taking into account that ψ̇ = κ we can rewrite this equation as

− 2 tanψ =
κ̇

κ2
=

1

2κ2
dκ2

dψ
(47)

and integrating to obtain the relation

κ = c cos2 ψ (48)

in which c is the integration constant. Combining (47) and (48) allow us
to find the intrinsic equation of the curve in the form

κ̇2 + 4κ4 − 4c2κ2 = 0.
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Mylar Balloon and Elastic Curves.
A Hanging Chain

The solution to this equation is κ = c
1+c2s2 while for ψ =

∫
κds we have

ψ = arctan cs

and respectively

sinψ =
cs√

1 + c2s2
, cosψ =

1√
1 + c2s2

·

Two additional integrations produce the coordinates of the points on the
curve

x(s) =
arc sinh(cs)

c
, z(s) =

√
1 + c2s2

c
·

If we eliminate the parameter s from these two equations, we have the
standard formula in the textbooks

z(x) =

√
1 + sinh2(cx)

c
=

cosh(cx)

c
· (49)

The plot of this function, i.e., the curve describing the form of the chain
is presented in Fig. 5.
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Figure: The graphics of the chain generated via formula (49) for c = 1.24.
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Mylar Balloon and Elastic Curves.
Eulers Elasticas as One-Dimensional Membranes

As it was explained before our problem is to find the extremum of
the functional

J =

∫ L

0
κ2(s)ds+λ1

∫ L

0
cos θ(s)ds+λ2

∫ L

0
sin θ(s)ds+λ

∫ L

0
ds (50)

which Lagrangian (taking into account that κ(s) =
dθ(s)

ds
= θ̇(s))

is
F (θ, θ̇, s) = θ̇2(s) + λ1 cos θ(s) + λ2 sin θ(s) + λ. (51)

The respective Euler-Lagrange equation is

θ̈(s) +
λ1
2

sin θ(s)− λ2
2

cos θ(s) = 0. (52)
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Mylar Balloon and Elastic Curves.
Eulers Elasticas as One-Dimensional Membranes

Differentiating with respect to s both sides of the above equation,
we have

...
θ (s) +

λ1
2
θ̇(s) cos θ(s) +

λ2
2
θ̇(s) sin θ(s) = 0. (53)

On the other side if we multiply both sides of (52) with θ̇(s) and
integrate we have

θ̇2(s)− λ1 cos θ(s)− λ2 sin θ(s) + 2µ = 0 (54)

where 2µ is the integration constant.
The proper combination of equations (53) and (54) leads to the
elimination of the Lagrange’s multipliers λ1 and λ2 and in this way
we get the equation

...
θ +

θ̇3

2
+ σθ̇ = 0. (55)
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Mylar Balloon and Elastic Curves.
Eulers Elasticas as One-Dimensional Membranes

Since by definition θ̇ = κ, we can write aslo

κ̈+
κ3

2
+ µκ = 0 (56)

and to see that this is nothing else but the intrinsic equation of the
curves we are looking for. Further on we will call it Euler’s
elasticas equation. The case when µ ≡ 0, i.e.,

κ̈+
κ3

2
= 0 (57)

is known in the literature as the free elasticas equation. A
remarcable fact is that solutions of equation (56) can be derived
like deformation of the solutions of (57), in other words - the
solutions of the free elastcas are suficient to generate the Euler
elasticas solutions. J. Bernoulli [1694] claimed this but do not
present any arguments. In strictly analitycal form this is proved by
Djondjorov et al [2009].
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Mylar Balloon and Elastic Curves.
Eulers Elasticas as One-Dimensional Membranes

It is interesting to mention also that under appropriate choice of
the coordinate system the original equation of elasticas (52) can be
written in the form

θ̈ + λ sin θ = 0 (58)

which coincides with the equation of the mathematical pendulum.
The connection between the pendulunm and elasticas is shown in
Fig. 6.
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Mylar Balloon and Elastic Curves.
Eulers Elasticas as One-Dimensional Membranes

Figure: Examples of conformity between Euler elasticas and the motions
of the mathematical pendulum.
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Thank you for attention!
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