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Chapter 6
Exact Solutions and Applications
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Unduloids and Nerve Fibers. Model

The stretching force applied to the membrane edge generates
tension in the membrane, which in turn creates hydrostatic pressure
in the cytoplasm. Since a fluid surface with surface tension is
unstable, it will change its shape, according to the Laplace-Young
law. According to the Laplace-Young equation (??) we can write

∆p = σ(κπ + κµ) (1)

where ∆p is the transmembrane pressure differential, σ is the
surface tension, and κπ and κµ are the so-called parallel,
respectively meridional principal curvatures (see (??)) of the axially
symmetric surface presenting the beaded shape. The cylindrical
part of the transformed nerve has a larger mean curvature than the
beaded region. According to equation (1), the membrane over the
cylindrical region produces a higher pressure, counteracted by an
opposing pressure created by the compressed cytoskeleton
core.From a geometrical viewpoint, two beads are generally
separated by a compacted neck, but the limit situation of directly
connected beds is also possible.
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Unduloids and Nerve Fibers. Parametrization

In Markin et al [1999], the nerve fibre is modelled as a cylindrical
fluid membrane having the ability to change easily its shape at
constant membrane area and fibre volume. Since further the ratio
of ∆p to σ is also a constant, the Laplace-Young equation can be
written as

κπ + κµ = const (2)

revealing the fact that we are dealing here with the class of the
so-called Delaunay surfaces described in Section ??, and for more
details see Eells [1987] and Oprea [2007]. Kenmotsu [1980] had
shown that rotational surfaces of a given mean curvature in R3 are
defined essentially by their Gauss map.
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Unduloids and Nerve Fibers. Parametrization

Later on Eells [1987] pointed out that the Gauss map for the
Delaunay surfaces is given by the general formula

sinψ(ρ) = mρ+
n

ρ
, ρ 6= 0, m, n ∈ R (3)

in which ρ is the distance from the symmetry axis, m and n are real
parameters, and ψ(ρ) is the angle between the tangent T to the
profile curve at the current point B and the Z axis (cf. Fig. 1).
Introducing ρmax = R and ρmin = r we easily find that in our case
m and n are given by the formulas

m =
1

R + r
, n =

Rr

R + r
(4)

and that the meridional curve is determined by the equation

dx

dρ
= tanψ(ρ) =

ρ2 + Rr√
(R2 − ρ2)(ρ2 − r2)

· (5)
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Unduloids and Nerve Fibers. Parametrization

Фигура: Geometry of the profile curve of Delaunay’s unduloid (left) and
that of a full segment of the periodic beaded shape (right).

I. Mladenov & M.Hadzhilazova The Many Faces of Elastica



Unduloids and Nerve Fibers. Parametrization

The integration of (5) amounts to evaluating the integral∫
(ρ2 + Rr)dρ√

(R2 − ρ2)(ρ2 − r2)
(6)

which can be performed via the Jacobian elliptic function dn(u, k),
i.e.,

ρ =
r

dn(u, k)
, k =

√
R2 − r2

R
(7)

where u is its argument, and k is the so called elliptic modulus. The
above substitution produces immediately

dρ√
(R2 − ρ2)(ρ2 − r2)

=
du

R
(8)

and therefore
x(u) =

1

R

∫
ρ2(u)du + ru. (9)
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Unduloids and Nerve Fibers. Parametrization

The first integral can be evaluated by taking into account the
formula (cf formula 315.02 in Byrd & Friedman [1971])∫

du

dn2(u, k)
=

1

k̃2

(
E (am(u, k), k)− k2 sn(u, k) cn(u, k)

dn(u, k)

)
(10)

in which k̃ is the so-called complementary elliptic modulus

k̃2 = 1− k2 =
r2

R2
(11)

while the second one is trivial. Taken together they give

x(u) = RE (am(u, k), k) + rF (am(u, k), u)− Rk2 sn(u, k)cn(u, k)

dn(u, k)
·

(12)
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Unduloids and Nerve Fibers. Parameters of the Nerve Fibers

The length `(P) of a single bead (Fig. 1) can be found by noticing that
the real period of dn(u, k) is 2K (k) along with the equality
am(K (k), k) = π/2 and (12), which combined lead to the result

`(P) = 2(RE (k) + rK (k)). (13)

The area of the striped part of the undulated surface see (Fig. 2) is given
by the application of the slice formula

A(B) = 2π

∫
ρds (14)

where

ds =

√
1 +

(
dx

dρ

)2

dρ =
(R + r)ρdρ√

R2 − ρ2)(ρ2 − r2)
(15)

and therefore

A(B) = 2π(R + r)

∫
ρ2dρ√

(R2 − ρ2)(ρ2 − r2)
· (16)
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Unduloids and Nerve Fibers. Parameters of the Nerve Fibers

Фигура: The area of the striped part of the unduloid surface is given by
formula (17). The dotted domain presents the volume enclosed by the
unduloid surface and the two disks through the points A and B.
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Unduloids and Nerve Fibers. Parameters of the Nerve Fibers

The integration is immediate due to formula (10) and gives

A(B) = 2π(R+r)R

(
E (am(u, k), k)− k2 sn(u, k)cn(u, k)

dn(u, k)

)
. (17)

Obviously, the surface area of the whole bead is

A(P) = 2A(C ) = 4πR(R + r)E (k). (18)

The volume enclosed by the unduloid surface and the two disks
through the points A and B can be found in a similar way.
Together the slice formula (5) and (7) lead to the following result

V(B) = π

∫ u

0
ρ2dx = π

∫ u

0

ρ2(ρ2 + Rr)dρ√
R2 − ρ2)(ρ2 − r2)

(19)

= π

(
r4

R

∫ u

0

du

dn4(u, k)
+ r3

∫ u

0

du

dn2(u, k)

)
.
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Unduloids and Nerve Fibers. Parameters of the Nerve Fibers

The formula for the first of the integrals above is also available,
namely (see Byrd & Friedman [1971] formula 315.04)

∫
du

dn4(u, k)
=

1

3k̃4

[
2(2− k2)

(
E (am(u, k), k)− k2 sn(u, k)cn(u, k)

dn(u, k)

)

−k̃2F (am(u, k), k)− k2k̃2 sn(u, k)cn(u, k)

dn3(u, k)

]
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Unduloids and Nerve Fibers. Parameters of the Nerve Fibers

and having (10) in mind, we end up with the expression

V(B) =
πR

3
[(2R2 + 3Rr + 2r2)E (am(u, k), k)− r2F (am(u, k), k)

(20)

−(2R2 + 3Rr + 3r2)k2 sn(u, k)cn(u, k)

dn(u, k)
].

The formula for the volume of the entire bead follows immediately

V(P) =
2πR

3
[(2R2 + 3Rr + 2r2)E (k)− r2K (k)]. (21)
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Unduloids and Nerve Fibers. Sensitivity of the Equilibrium Shapes on the

Parameters

The surface and volume enclosed by the membrane are assumed to
remain unchanged during the transformation of the nerve fibre
caused by the action of hydrostatic pressure and axial tension. As
the initial configuration is a cylinder of radius r̊ and length `0 we
have

A = 2πr̊`0 , V = πr̊2`0 ,
V
A

=
r̊

2
=
V(P)

A(P)

and therefore
r̊ = 2

V(P)

A(P)
· (22)
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Unduloids and Nerve Fibers. Sensitivity of the Equilibrium Shapes on the

Parameters

By definition, the average radius r̄ of the bead is

r̄ =
R + r

2
(23)

which allows us to write down the following relations
`(P)

r̄
=

4(RE (k) + rK (k))

R + r
,

`(P)

r̊
=

(RE (k) + rK (k))A(P)

V(P)
(24)

r̄

r̊
=

R + r

4

A(P)

V(P)
·

As a result of stretching, the length of the fibre in principal should
increase and it is an interesting problem to analyze how this
deformation actually depends on the oscillating amplitude a defined
by the formula

a =
R − r

R + r
· (25)
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Unduloids and Nerve Fibers. Sensitivity of the Equilibrium Shapes on the

Parameters

Фигура: The plots of `(P)/r̄ and `(P)/̊r (left), and that of the average
radius normalized by r̊ (right).
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Unduloids and Nerve Fibers. Sensitivity of the Equilibrium Shapes on the

Parameters

Corresponding plots of the dependencies of (24) on a are presented
in Fig. 3.
It is immediate to prove also that we have

r =
1− a

1 + a
R = (1− a)r̄ , k =

2
√

a

1 + a

which makes clear that the shape of the bead depends exclusively
on the amplitude while R specifies its bulk size

` = A Ltot

Atot
= 2πr̊`0

Ltot

Atot
·
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Unduloids and Nerve Fibers. Sensitivity of the Equilibrium Shapes on the

Parameters

The latter means that we can find the ratio
`

`0

= 4π
V(P)

A(P)

Ltot

Atot
= 4π

V(P)

A(P)

`(P) + h

A(P) + 2πrh

and respectively the elongation

ε =
`

`0

− 1.

Its variations as a function of a and h are depicted in Fig. 4.
The evolution recorded in Fig. 4 shows that the elongation is limited to
values less than 15% in tension, but can reach values up to 30% in
compression (when R ≥ h). A maximum in ε is observed for values of the
parameter h higher than a certain critical value a.
The closed form expressions for the beaded shape of neurons under
stretch which have been obtained represent a significant improvement
compared to the Markin et al [1999] approach based entirely on
numerical solution of the determining equations. These results allow a
sensitivity analysis of the dependence of the equilibrium shapes on the
model parameters and visualization of morphological transformations.
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Unduloids and Nerve Fibers. Sensitivity of the Equilibrium Shapes on the

Parameters

Фигура: The plots of elongation ε as a function of the amplitude
oscillation a and different values of h (left), and that of the length h of
the cylindrical neck (right) for the fixed value of a = 0.2.
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Mathematical Model of the Cole Experiment

The main aim in this section is to study in some detail the strongly
nonlinear behavior of the vesicle deformations. The lipid membrane is
treated as a thin elastic shell that possesses four modes of deformation –
dilation, bending, shearing and torsion. From the geometrical viewpoint,
the bending and torsion are related to the variations of the two principal
curvatures of the interface.
The curvature dependence of the interfacial tension was investigated for
the first time by Young and Laplace. The variational problem is
connected with the minimization of the functional

σ

∫
dA+ ∆p

∫
dV (26)

and leads to the Laplace-Young equation

∆p = 2σH (27)

which can be easily established by relying on the results about the
variations of the surface area and the volume, i.e.,

δ

∮
dA = −2

∮
ψHdA, δ

∫
dV =

∫
ψdA. (28)
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Mathematical Model of the Cole Experiment

Having in mind (28) the variation of (26) results in

−2σ

∮
ψHdA+ ∆p

∫
ψdA (29)

which is zero at a minimizer, i.e.,∮
ψ(∆p − 2σH)dA = 0. (30)

As the latter has to be satisfied for any smooth function ψ this
equality is equivalent with equation (27).
In the above proof we have not considered any specific shape of the
membrane (for example with some symmetry) and consequently the
equation (27) is valid for an arbitrary membrane.
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Mathematical Model of the Cole Experiment. Cole Model

It seems appropriate to recall here the essential points of Cole’s
method of calculations. Cole compressed a spherical egg of initial
radius a between two parallel plates with a fixed force F . The
surface tension was then evaluated by the measurement of
flattening (the half-thickness h), the radius r of the contact area A
and the equatorial radius R (see Fig. 5). The values of the
parameters h and R can be measured with high enough accuracy,
but this is not the case with r , particularly when the contact angle
is very close to 180◦. The other two parameters which enter into
the model are the inner radius ρ of the torus-like outer part of the
membrane and the contact angle θ. Relying again on geometry, one
can easily find that the above parameters are given by the
expressions

ρ =
h2 + (R − r)2

2(R − r)
, θ = arcsin

h

ρ
· (31)
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Mathematical Model of the Cole Experiment. Cole Model

Фигура: Geometry of the Cole’s experiment.
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Mathematical Model of the Cole Experiment. Cole Model

The profile curve of the torus-like part of the egg is parameterized
explicitly by the formulas

x = R − ρ+ ρ cos u, z = ρ sin u, u ∈ [− arcsin
h

ρ
, arcsin

h

ρ
]

and this is enough for finding the volume, respectively the surface
area in the form (cf. Hadzhilazova & Mladenov [2004])

V =2π[h(R2+2ρ2−2Rρ+(R−ρ)
√
ρ2 − h2)+ρ2(R−ρ)θ− h3

3
] (32)

S = 4πρ[(R − ρ)θ + h] + 2πr2. (33)
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Mathematical Model of the Cole Experiment. Cole Model

By photographically obtained values for R , ρ and h, the first two
are plotted against the third and, after that, analytically fitted by
explicit functions of h ≡ z . The remaining parameter r can be found
by solving equation (31) with respect to this variable and this gives

r(z) = R − ρ−
√
ρ2 − z2.

Having ρ(z), R(z) and r(z) one can put them back into (32) in
order to check practically the constancy of the volume
V = (4/3)πa3. Besides, one can find the values of 1/R + 1/ρ for
the points at the equator and using

∆p = F/A = σ(1/R + 1/ρ) (34)

determine the surface tension σ, which was the main purpose of the
Cole [1932] experiment.
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Mathematical Model of the Cole Experiment. Yoneda
Method

In order to bypass the ambiguity in the measurement of the radius r of
the contact disk area, Yoneda [1964] proposed another method for
calculation of the surface tension. It is based on the following arguments.
Let us assume that the egg is compressed to the thickness z under the
external force F . If under a slightly increasing force the egg is compressed
further by the distance −dz , the work required for this additional
compression is −Fdz , assumed to be expended entirely for stretching of
the cortex by neglecting any other effects ((bending, etc.). If dS is the
stretching of the surface produced by the compression, this work is just
the surface tension σ (supposing that it is uniform on the entire surface)
multiplied by dS , i.e.,

− Fdz = σdS or F = −σdS

dz
· (35)

If F is plotted against − dS

dz
, the last equation implies that σ is given as

the slope of the line through the origin and this is confirmed
experimentally by Yoneda [1964].
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Mathematical Model of the Cole Experiment. Yoneda
Method

Фигура: The experimental results and the approximate curves for R are
presented on the left, and these ones for ρ on the right.
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Mathematical Model of the Cole Experiment. Nodoids and
the Compression of Spherical Eggs

Looking at (34) it is clear that the surface tension will be constant
provided we deal with axially symmetric surfaces of constant mean
curvature, which according to the Delaunay classification are called
nodoids. The profile curve of a such surface is periodic along the
symmetry axis and has one local minimum and one local maximum
in each period. Its geometry is presented at the outermost right
hand side in Fig. 7. We can describe the deformed part of the egg
in analytical form using the formulas

x(u) = R
√

1− k2 sin2 u, z(u) = R
(
E (u, k)− ε2F (u, k)

)
(36)

where

u ∈ [− arcsin
1√

1 + ε2
, arcsin

1√
1 + ε2

], k2 = 1− ε4, ε = r/R.

(37)
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Mathematical Model of the Cole Experiment. Nodoids and
the Compression of Spherical Eggs

Фигура: Nodoid’s geometry.
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Mathematical Model of the Cole Experiment. Nodoids and
the Compression of Spherical Eggs

Here F (u, k) and E (u, k) denote the incomplete elliptic integrals of
the first and second kind, and k is the elliptic modulus. Using the
explicit parametrization (36) of the compressed egg profile we can
prove that the infinitesimal arclength of the profile curve is
determined by the formula

ds =
R2 + r2

R
du (38)

and that the mean curvature of the deformed egg is

H =
R

r2 − R2
· (39)

According to the second formula in (36) The height of the contact
plane is

z(ε) = R

(
E (arcsin

1√
1 + ε2

, k)− ε2F (arcsin
1√

1 + ε2
, k)

)
.
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Mathematical Model of the Cole Experiment. Nodoids and
the Compression of Spherical Eggs

By using again the fact that during the compression the volume is
conserved one can find the relationship between the geometrical
parameters that are needed - the initial radius a and that of the
deformed egg R . The realization of this strategy gives us the
relationship

R

a
=

[(
(1− 3ε2

2
+ ε4)

(
1− ε2 + E (k)

)
+ ε2(1− ε2 − ε2K (k)

2
)

)
/2

]− 1
3

(41)
and this means that knowing a, measuring R and using formula
(41) one can find ε, and therefore via (36) and (37) the profile
curve of the compressed egg.
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Mathematical Model of the Cole Experiment. Nodoids and
the Compression of Spherical Eggs

Taking into account that the right hand side of (41) is a function
only of the deformation parameter ε and that its values belong to
the interval 0 ≤ ε ≤ 1, we can find a linear fractional function
which approximates it very well (see Fig. 8). We find, with accuracy
exceeding the experimental accuracy, that we have the relations

R = a
0.99098− 0.77075ε

1− 0.93678ε
, ε =

99098a− 100000R

77075a− 93678R
, r = εR.

(42)
The last equation means that it is not necessary to measure the
radius of contact area!
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Mathematical Model of the Cole Experiment. Nodoids and
the Compression of Spherical Eggs
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Фигура: The graphics of the function in the right hand side of equation
(41) and its linear fractional approximation.
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Mathematical Model of the Cole Experiment. Nodoids and
the Compression of Spherical Eggs

If one wants to use Yoneda’s equation (35), it is necessary to find
the area of the surface outside the contact area which is defined by
the formula

A(ε) = 2π

∫ arcsin 1√
1+ε2

0
x(u)ds = 2πR2(1+ε2)E

(
arcsin

1√
1 + ε2

, k
)
.

(43)
By adding the surface of the contact disk πr2 = πR2ε2 one finds
full area (of the upper side) of the egg in the form

S(ε) = πR2

(
2(1 + ε2)E (arcsin

1√
1 + ε2

, k) + ε2
)
. (44)

We note that the expressions for the surface area (44) and the
height (40) are analytical functions only of the deformation
parameter ε and their differentials in Yoneda’s formula (35).

I. Mladenov & M.Hadzhilazova The Many Faces of Elastica



Mathematical Model of the Cole Experiment. Nodoids and
the Compression of Spherical Eggs

Фигура: The graphics of the derivative in Yoneda’s equation (35).
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Thank you for attention!
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