Geometry, Integrability and Quantization Varna, 2-7.06.2018

Perturbed ($2 n-1$)-dimensional Kepler problem and the nilpotent adjoint orbits of $U(n, n)$

Anatol Odzijewicz
Institute of Mathematics
University in Białystok

- A.O. Barut, H. Kleinert, Transition Probabilities of the H-Atom from Noncompact Dynamical Groups, Phys.Rev. 156, 1541-1545 (1967)
- S. Lang, Algebra, Springer-Verlag New York, 2002
- A.A. Kirillov, Elements of the Theory of Representations, Springer-Verlag Berlin Heidelberg, 1976
- J.K. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Commun. Pure Appl. Math. 23, 609-636 (1970)
- M. Kummer, On the Regularization of the Kepler Problem, Commun. Math. Phys. 84, 133-152 (1982)
- P. Kustaanheimo, E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math. 218, 204-219 (1965)
- T. Iwai, The geometry of the $S U(2)$ Kepler problem, J. Geom. Phys. 7, 507-535, 1990
- T. Iwai, Y. Uwano, The four-dimensional conformal Kepler problem reduces to the three-dimensional Kepler problem with a centrifugal potential and Dirac's monopole field. Classical theory, J. Math. Phys. 27, 1523-1529, 1986
- H. McIntosh, A. Cisneros, Degeneracy in the presence of a magnetic monopole, J.Math. Phys. 11, 896-916, 1970
- I.M. Mladenov, V.V. Tsanov, Geometric quantization of the MIC-Kepler problem, J. Phys. A: Math. Gen. 20, 5865-5871, 1987
- A. Odzijewicz, M. Świetochowski, Coherent states map for MIC-Kepler system, J. Math. Phys. 38, 5010-5030, 1997
- I.A. Malkin, V.I. Man'ko, Symmetry of the Hydrogen Atom, JETP Letters 2, 146-148, 1966
- G. Meng, Generalized MICZ-Kepler problems and unitary highest weight modules -II, J. London Math. Soc. 81, 663-678, 2010
- G. Meng, Generalized Kepler Problems I:without Magnetic Charges, J. Math. Phys. 54, 2013, 012109
- G. Meng, Euclidean Jordan Algebras, Hidden Actions, and Kepler Problems, J. Math. Phys. 52 (2011)
- G. Meng, The Poisson Realization of so $(2,2 k+2)$ on Magnetic Leaves, J. Math. Phys. 54 (2013)
- G. Meng, The Universal Kepler Problem, J. Geom. Symm. Phys. 36, 47-57, 2014
- A. Odzijewicz, E. Wawreniuk, Classical and quantum Kummer shape algebras, J. Math. Phys. 49 (2016) 265202
- K. Penrose, Twistor algebra, J. Math. Phys. 8, 345-366 (1967)
- D. Zwanzinger, Exactly soluble nonrelativistic model of particles with both electric and magnetic charges, Phys. Rev. 176, 1480-1488 (1968)

I Preliminary definitions

$\left(\mathbb{C}^{2 n}, \phi\right)=\mathcal{T}$ - twistor space, where ϕ is a hermitian form on $\mathbb{C}^{2 n}$ of signature $(\underbrace{+\ldots+}_{n} \underbrace{-\ldots-}_{n})$

$$
\phi=\phi^{+}, \quad \phi^{2}=i d, \quad \phi \in M a t_{2 n \times 2 n}(\mathbb{C})
$$

$\left(\mathbb{C}^{2 n}, \phi\right)=\mathcal{T}$ - twistor space, where ϕ is a hermitian form on $\mathbb{C}^{2 n}$ of signature $(\underbrace{+\ldots+}_{n} \underbrace{-\ldots-}_{n})$

$$
\phi=\phi^{+}, \quad \phi^{2}=i d, \quad \phi \in M a t_{2 n \times 2 n}(\mathbb{C})
$$

The group of symmetry of the twistor space:

$$
U(n, n):=\left\{g \in G L(2 n, \mathbb{C}): g \phi g^{+}=\phi\right\}
$$

We define the complex vector bundle

$$
\begin{equation*}
\mathcal{N}:=\left\{(\mathcal{Z}, z) \in \operatorname{gl}(2 n, \mathbb{C}) \times \operatorname{Gr}\left(n, \mathbb{C}^{2 n}\right): \operatorname{Im}(\mathcal{Z}) \subset z \subset \operatorname{Ker}(\mathcal{Z})\right\} \tag{1}
\end{equation*}
$$

and involutions
$I: \mathbf{g l}(2 n, \mathbb{C}) \rightarrow \mathbf{g l}(2 n, \mathbb{C})$,
$\stackrel{\perp}{\sim}: \operatorname{Gr}\left(n, \mathbb{C}^{2 n}\right) \rightarrow \mathbf{G r}\left(n, \mathbb{C}^{2 n}\right)$,
$\tilde{I}: \mathcal{N} \rightarrow \mathcal{N}$
by

$$
\begin{gather*}
I(\mathcal{Z}):=-\phi \mathcal{Z}^{+} \phi, \tag{2}\\
\perp(z):=z^{\perp}, \tag{3}\\
\tilde{I}(\mathcal{Z}, z):=\left(I(\mathcal{Z}), z^{\perp}\right), \tag{4}
\end{gather*}
$$

I Preliminary definitions

By definition

$$
\begin{gathered}
\mathcal{Z} \in \mathbf{u}(n, n) \quad \text { iff } \quad I(\mathcal{Z})=\mathcal{Z} \\
z \in \mathbf{G r}_{0}\left(n, \mathbb{C}^{2 n}\right) \quad \text { iff } \quad z=z^{\perp} \\
(\mathcal{Z}, z) \in \mathcal{N}_{0} \quad \text { iff } \quad \tilde{I}(\mathcal{Z}, z)=(\mathcal{Z}, z)
\end{gathered}
$$

By $\pi_{\mathcal{N}_{0}}: \mathcal{N}_{0} \rightarrow \operatorname{Gr}_{0}\left(n, \mathbb{C}^{2 n}\right)$ we denote the real vector bundle over the G rassmannian $\operatorname{Gr}_{0}\left(n, \mathbb{C}^{2 n}\right)$ of complex n-dimensional subspaces of $\mathbb{C}^{2 n}$ isotropic with respect to

$$
\begin{equation*}
\langle v, w\rangle:=v^{+} \phi w \tag{6}
\end{equation*}
$$

Proposition

An element $\mathfrak{X} \in \mathbf{u}(n, n)$ belongs to $p r_{1}\left(\mathcal{N}_{0}\right)$ if and only if $\mathfrak{X}^{2}=0$.

Proposition

An element $\mathfrak{X} \in \mathbf{u}(n, n)$ belongs to $p r_{1}\left(\mathcal{N}_{0}\right)$ if and only if $\mathfrak{X}^{2}=0$.

Taking the decomposition $\mathbb{C}^{2 n}=\mathbb{C}^{n} \oplus \mathbb{C}^{n}$ we choose as ϕ the Hermitian matrix

$$
\phi_{d}=\left(\begin{array}{cc}
E & 0 \tag{7}\\
0 & -E
\end{array}\right),
$$

where E and 0 are unit and zero $n \times n$-matrices

There is a natural diffeomorphism of manifolds $U(n) \cong \operatorname{Gr}_{0}\left(n, \mathbb{C}^{2 n}\right)$ defined in the following way

$$
\begin{equation*}
I_{0}: U(n) \ni Z \mapsto z:=\left\{\binom{Z \xi}{\xi}: \xi \in \mathbb{C}^{n}\right\} \in \mathbf{G r}_{0}\left(n, \mathbb{C}^{2 n}\right) . \tag{8}
\end{equation*}
$$

I Preliminary definitions

There is a natural diffeomorphism of manifolds $U(n) \cong \mathrm{Gr}_{0}\left(n, \mathbb{C}^{2 n}\right)$ defined in the following way

$$
\begin{equation*}
I_{0}: U(n) \ni Z \mapsto z:=\left\{\binom{Z \xi}{\xi}: \xi \in \mathbb{C}^{n}\right\} \in \operatorname{Gr}_{0}\left(n, \mathbb{C}^{2 n}\right) \tag{8}
\end{equation*}
$$

For ϕ_{d} the block matrix elements $A, B, C, D \in M a t_{n \times n}(\mathbb{C})$ of
$g=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in U(n, n)$ satisfy

$$
\begin{equation*}
A^{+} A=E+C^{+} C, \quad D^{+} D=E+B^{+} B \text { and } D^{+} C=B^{+} A \tag{9}
\end{equation*}
$$

From (8) one finds that $U(n, n)$ acts on $U(n)$ as follows

$$
\begin{equation*}
Z^{\prime}=\sigma_{g}(Z)=(A Z+B)(C Z+D)^{-1} \tag{10}
\end{equation*}
$$

II $T^{*} U(n)$ as $U(n, n)$-Hamiltonian space

Proposition

(i) The map $\mathbf{I}_{0}: T^{*} U(n) \cong U(n) \times i H(n) \rightarrow \mathcal{N}_{0}$ defined by

$$
\mathbf{I}_{0}(Z, \rho):=\left(\left(\begin{array}{cc}
-Z \rho Z^{+} & Z \rho \tag{11}\\
(Z \rho)^{+} & \rho
\end{array}\right),\left\{\binom{Z \xi}{\xi}: \xi \in \mathbb{C}^{n}\right\}\right) \in \mathcal{N}_{0}
$$

is a $U(n, n)$-equivariant (i.e. $\mathbf{I}_{0} \circ \Lambda_{g}=\Sigma_{g} \circ \mathbf{I}_{0}$) isomorphism of the vector bundles. The action $\Sigma_{g}: \mathcal{N}_{0} \rightarrow \mathcal{N}_{0}, g \in U(n, n)$, is a restriction to $U(n, n)$ and $\mathcal{N}_{0} \subset \mathcal{N}$ of the action of the complex linear group $G L(2 n, \mathbb{C}) \quad \Sigma_{g}(\mathcal{Z}, z):=\left(g \mathcal{Z}^{-1}, \sigma_{g}(z)\right)$. The action $\Lambda_{g}: U(n) \times i H(n) \rightarrow U(n) \times i H(n)$ is defined by

$$
\begin{equation*}
\Lambda_{g}(Z, \rho)=\left((A Z+B)(C Z+D)^{-1},(C Z+D) \rho(C Z+D)^{+}\right) \tag{12}
\end{equation*}
$$

where $g=\left(\begin{array}{ll}A & B \\ C & C\end{array}\right)$.

II $T^{*} U(n)$ as $U(n, n)$-Hamiltonian space

Proposition

(ii) The canonical one-form γ_{0} on $T^{*} U(n) \cong U(n) \times i H(n)$ written in the coordinates $(Z, \delta) \in U(n) \times i H(n)$ assumes the form

$$
\begin{equation*}
\gamma_{0}=i \operatorname{Tr}\left(\rho Z^{+} d Z\right) \tag{13}
\end{equation*}
$$

and it is invariant with respect to the action (12).

II $T^{*} U(n)$ as $U(n, n)$-Hamiltonian space

Proposition

(iii) The map $\mathrm{J}_{0}: T^{*} U(n) \rightarrow \mathbf{u}(n, n)$ defined by

$$
\mathbf{J}_{0}(Z, \rho):=\left(p r_{1} \circ \mathbf{I}_{0}\right)(Z, \rho)=\left(\begin{array}{cc}
-Z \rho Z^{+} & Z \rho \\
(Z \rho)^{+} & \rho
\end{array}\right)
$$

is the momentum map for symplectic form $d \gamma_{0}$, i.e. it is a $U(n, n)$-equivariant Poisson map of symplectic manifold $\left(T^{*} U(n), d \gamma_{0}\right)$ into Lie-Poisson space $\left(\mathbf{u}(n, n) \cong \mathbf{u}(n, n)^{*},\{; \cdot\}_{L-P}\right)$
$\{f, g\}_{L-P}\left(\alpha, \delta, \beta, \beta^{+}\right)=\operatorname{Tr}\left(\alpha\left(\left[\frac{\partial f}{\partial \alpha}, \frac{\partial g}{\partial \beta}\right]+\frac{\partial f}{\partial \beta} \frac{\partial g}{\partial \beta^{+}}-\frac{\partial g}{\partial \beta} \frac{\partial f}{\partial \beta^{+}}\right)\right.$
$+\beta\left(\frac{\partial f}{\partial \beta^{+}} \frac{\partial g}{\partial \alpha}+\frac{\partial f}{\partial \delta} \frac{\partial g}{\partial \beta^{+}}-\frac{\partial g}{\partial \beta^{+}} \frac{\partial f}{\partial \alpha}-\frac{\partial g}{\partial \delta} \frac{\partial f}{\partial \beta^{+}}\right)$
$+\beta^{+}\left(\frac{\partial f}{\partial \alpha} \frac{\partial g}{\partial \beta}+\frac{\partial f}{\partial \beta} \frac{\partial g}{\partial \delta}-\frac{\partial g}{\partial \alpha} \frac{\partial f}{\partial \beta}-\frac{\partial g}{\partial \beta} \frac{\partial f}{\partial \delta}\right)$
$\left.+\delta\left(\left[\frac{\partial f}{\partial \delta}, \frac{\partial g}{\partial \delta}\right]+\frac{\partial f}{\partial \beta^{+}} \frac{\partial g}{\partial \beta}-\frac{\partial g}{\partial \beta^{+}} \frac{\partial f}{\partial \beta}\right)\right)$ for $f, g \in C^{\infty}(\mathbf{u}(n, n), \mathbb{R})$.

II $T^{*} U(n)$ as $U(n, n)$-Hamiltonian space

Proposition

(i) Any $\Lambda\left(U(n, n)\right.$)-orbit $\mathcal{O}_{k, l}$ in $T^{*} U(n)=U(n) \times i H(n)$ is univocally generated from the element $\left(E, \rho_{k, l}\right) \in U(n) \times i H(n)$, where

$$
\begin{equation*}
\rho_{k, l}:=i \operatorname{diag}(\underbrace{1, \ldots, 1}_{k} \underbrace{-1, \ldots,-1}_{l} \underbrace{0, \ldots, 0}_{n-k-l}) \tag{14}
\end{equation*}
$$

and has structure of a trivial bundle $\mathcal{O}_{k, l} \rightarrow U(n)$ over $U(n)$, i.e. $\mathcal{O}_{k, l} \cong U(n) \times \Delta_{k, l}$, where $\Delta_{k, l}:=\left\{F \rho_{k, l} F^{+}: F \in G L(n, \mathbb{C})\right\}$.

II $T^{*} U(n)$ as $U(n, n)$-Hamiltonian space

Proposition

(i) Any $\Lambda\left(U(n, n)\right.$)-orbit $\mathcal{O}_{k, l}$ in $T^{*} U(n)=U(n) \times i H(n)$ is univocally generated from the element $\left(E, \rho_{k, l}\right) \in U(n) \times i H(n)$, where

$$
\begin{equation*}
\rho_{k, l}:=i \operatorname{diag}(\underbrace{1, \ldots, 1}_{k} \underbrace{-1, \ldots,-1}_{l} \underbrace{0, \ldots, 0}_{n-k-l}) \tag{14}
\end{equation*}
$$

and has structure of a trivial bundle $\mathcal{O}_{k, l} \rightarrow U(n)$ over $U(n)$, i.e. $\mathcal{O}_{k, l} \cong U(n) \times \Delta_{k, l}$, where $\Delta_{k, l}:=\left\{F \rho_{k, l} F^{+}: F \in G L(n, \mathbb{C})\right\}$.
(ii) The momentum map (12) gives one-to-one correspondence $\mathcal{O}_{k, l} \leftrightarrow \mathbf{J}_{0}\left(\mathcal{O}_{k, l}\right)=\mathcal{N}_{k, l} \subset \operatorname{pr}_{1}\left(\mathcal{N}_{0}\right)=\left\{\mathfrak{X} \in \mathbf{u}(n, n): \mathfrak{X}^{2}=0\right\}$ between $\Lambda(U(n, n))$-orbits in $T^{*} U(n)$ and $\operatorname{Ad}(U(n, n))$-orbits in $p_{1}\left(\mathcal{N}_{0}\right)$, where $\mathcal{N}_{k l}=\left\{A d_{g} \mathbf{l}_{0}\left(E, \rho_{k, l}\right): g \in U(n, n)\right\}$.

III $\left(\mathrm{C}^{2 n}, \phi\right)$ as $U(n, n)$-Hamiltonian space

Let us define a $U(n, n)$-invariant differential one-form

$$
\begin{equation*}
\gamma_{+-}:=i\left(\eta^{+} d \eta-\xi^{+} d \xi\right) \tag{15}
\end{equation*}
$$

on $\mathbb{C}^{2 n}=\mathbb{C}^{n} \oplus \mathbb{C}^{n}$. The Poisson bracket $\{f, g\}_{+-}$corresponding to the symplectic form $d \gamma_{+-}$is given by

$$
\begin{equation*}
\{f, g\}_{+-}:=i\left(\frac{\partial f}{\partial \eta^{+}} \frac{\partial g}{\partial \eta}-\frac{\partial g}{\partial \eta^{+}} \frac{\partial f}{\partial \eta}-\left(\frac{\partial f}{\partial \xi^{+}} \frac{\partial g}{\partial \xi}-\frac{\partial g}{\partial \xi^{+}} \frac{\partial f}{\partial \xi}\right)\right) \tag{16}
\end{equation*}
$$

III $\left(\mathrm{C}^{2 n}, \phi\right)$ as $U(n, n)$-Hamiltonian space

and momentum map $\mathbf{J}_{+-}: \mathbb{C}^{2 n} \rightarrow \mathbf{u}(n, n)$ by

$$
\mathbf{J}_{+-}(\eta, \xi):=i\left(\begin{array}{cc}
-\eta \eta^{+} & \eta \xi^{+} \tag{17}\\
-\xi \eta^{+} & \xi \xi^{+}
\end{array}\right)
$$

where $\eta, \xi \in \mathbb{C}^{n}$ and $f, g \in C^{\infty}\left(\mathbb{C}^{n} \oplus \mathbb{C}^{n}\right)$. One has the following identify

$$
\begin{equation*}
\mathbf{J}_{+-}(\eta, \xi)^{2}=\left(\eta^{+} \eta-\xi^{+} \xi\right) \cdot \mathbf{J}_{+-}(\eta, \xi) \tag{18}
\end{equation*}
$$

for this momentum map.

III $\left(\mathrm{C}^{2 n}, \phi\right)$ as $U(n, n)$-Hamiltonian space

Hence, \mathbf{J}_{+-}maps the space of null-twistors $\mathcal{T}_{+-}^{0}:=I_{+-}^{-1}(0)$, where

$$
\begin{equation*}
I_{+-}:=\eta^{+} \eta-\xi^{+} \xi \tag{19}
\end{equation*}
$$

onto the nilpotent coadjoint orbit $\mathcal{N}_{10}=\mathbf{J}_{0}\left(\mathcal{O}_{10}\right)$ corresponding to $k=1$ and $l=0$. The Hamiltonian flow
$\sigma_{+-}^{t}: \mathbb{C}^{n} \oplus \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \oplus \mathbb{C}^{n}, t \in \mathbb{R}$, defined by I_{+-}is given by

$$
\begin{equation*}
\sigma_{+-}^{t}\binom{\eta}{\xi}:=e^{i t}\binom{\eta}{\xi} \tag{20}
\end{equation*}
$$

III $\left(\mathrm{C}^{2 n}, \phi\right)$ as $U(n, n)$-Hamiltonian space

Proposition

(i) Nilpotent orbit \mathcal{N}_{10} is the total space of the fibre bundle

$$
\begin{array}{cc}
\mathbb{S}^{2 n-1} \longrightarrow & \mathcal{N}_{10} \\
 \tag{21}\\
& \dot{\mathbb{C}}^{n} / U(1)
\end{array}
$$

over $\dot{\mathbb{C}}^{n} / U(1)$ with $\mathbb{S}^{2 n-1}$ as a typical fibre. So, this bundle is a bundle of $(2 n-1)$-dimensional spheres associated to $U(1)$-principal bundle $\dot{\mathbb{C}}^{n} \rightarrow \dot{\mathbb{C}}^{n} / U(1)$.

III $\left(\mathrm{C}^{2 n}, \phi\right)$ as $U(n, n)$-Hamiltonian space

Proposition

(ii) One can also consider \mathcal{N}_{10} as the total space of the fibre bundle

over complex projective space $\mathbb{C P}(n-1)$ which is the base of Hopf $U(1)$-principal bundle $\mathbb{S}^{2 n-1} \rightarrow \mathbb{S}^{2 n-1} / U(1) \cong \mathbb{C P}(n-1)$.

III $\left(\mathrm{C}^{2 n}, \phi\right)$ as $U(n, n)$-Hamiltonian space

We also will use the anti-diagonal

$$
\phi_{a}:=i\left(\begin{array}{cc}
0 & -E \tag{23}\\
E & 0
\end{array}\right),
$$

realization of twistor form (6).
Subsequently we will denote the realizations $\left(\mathbb{C}^{2 n}, \phi_{d}\right)$ and $\left(\mathbb{C}^{2 n}, \phi_{a}\right)$ of twistor space by \mathcal{T} and $\tilde{\mathcal{T}}$, respectively. The same convention will be assumed for their groups of symmetry, i.e.
$g=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in U(n, n)$ if and only if $g^{+} \phi_{d} g=\phi_{d}$ and
$\tilde{g}=\left(\begin{array}{cc}\tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D}\end{array}\right) \in \widetilde{U(n, n)}$ if and only if $\tilde{g}^{+} \phi_{a} \tilde{g}=\phi_{a}$. Hence, for
$\tilde{g} \in \widetilde{U(n, n)}$ one has

$$
\begin{align*}
& \tilde{A}^{+} \tilde{C}=\tilde{C}^{+} \tilde{A} \\
& \tilde{D}^{+} \tilde{B}=\tilde{B}^{+} \tilde{D} \tag{24}\\
& \tilde{A}^{+} \tilde{D}=E+\tilde{C}^{+} \tilde{B}
\end{align*}
$$

III $\left(\mathrm{C}^{2 n}, \phi\right)$ as $U(n, n)$-Hamiltonian space

The canonical one-form (15) and the momentum map (17) for $\tilde{\mathcal{T}}$ are given by

$$
\begin{equation*}
\tilde{\gamma}_{+-}=v^{+} d \zeta-\zeta^{+} d v \tag{25}
\end{equation*}
$$

and by

$$
\tilde{\mathbf{J}}_{+-}(v, \zeta)=\left(\begin{array}{ll}
v \zeta^{+} & -v v^{+} \tag{26}\\
\zeta \zeta^{+} & -\zeta v^{+}
\end{array}\right)
$$

where $\binom{v}{\zeta} \in \tilde{\mathcal{T}}$. The null twistors space is defined as $\tilde{\mathcal{T}}_{+-}^{0}:=\tilde{I}_{+-}^{-1}(0)$, where

$$
\begin{equation*}
\tilde{I}_{+-}(v, \zeta):=i\left(\zeta^{+} v-v^{+} \zeta\right) \tag{27}
\end{equation*}
$$

III $\left(\mathrm{C}^{2 n}, \phi\right)$ as $U(n, n)$-Hamiltonian space

The Hamiltonian flow on $\mathbb{C}^{2 n}$ generated by \tilde{I}_{+-}is given by

$$
\begin{equation*}
\tilde{\sigma}_{+-}^{t}\binom{v}{\zeta}=e^{i t}\binom{v}{\zeta} \in \tilde{\mathcal{T}} \tag{28}
\end{equation*}
$$

Both realizations \mathcal{T} and $\tilde{\mathcal{T}}$ of the twistor space are related by the following unitary transform of $\mathbb{C}^{2 n}$:

$$
\begin{equation*}
\binom{v}{\zeta}=\mathcal{C}^{+}\binom{\eta}{\xi} \text { and }\binom{\eta}{\xi}=\mathcal{C}\binom{v}{\zeta} \tag{29}
\end{equation*}
$$

where

$$
\mathcal{C}:=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
E & -i E \tag{30}\\
-i E & E
\end{array}\right) .
$$

IV Equivalent realization of the regularized Kepler problem

Now let us consider $H(n) \times H(n)$ with $d \tilde{\gamma}_{0}$, where

$$
\begin{equation*}
\tilde{\gamma}_{0}:=-\operatorname{Tr}(X d Y) \tag{31}
\end{equation*}
$$

and $(Y, X) \in H(n) \times H(n)$, as a symplectic manifold. We define the symplectic action of $\tilde{g}=\left(\begin{array}{cc}\tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D}\end{array}\right)$ on $H(n) \times H(n)$ by

$$
\begin{equation*}
\tilde{\sigma}_{\tilde{g}}(Y, X):=\left((\tilde{A} Y+\tilde{B})(\tilde{C} Y+\tilde{D})^{-1},(\tilde{C} Y+\tilde{D}) X(\tilde{C} Y+\tilde{D})^{+}\right) . \tag{32}
\end{equation*}
$$

We note that this action is not defined globally, i.e. the formula (32) is valid only if $\operatorname{det}(\tilde{C} Y+\tilde{D}) \neq 0$.

The momentum map $\tilde{\mathbf{J}}_{0}: H(n) \times H(n) \rightarrow \widetilde{\mathbf{u}(n, n)}$ corresponding to $d \tilde{\gamma}_{0}$ and $\tilde{\sigma}_{\tilde{g}}$ has the form

$$
\tilde{\mathbf{\jmath}}_{0}(Y, X)=\left(\begin{array}{cc}
-Y X & Y X Y \tag{33}\\
-X & X Y
\end{array}\right)
$$

and it satisfies the equivariance property $\tilde{\mathbf{J}} \circ \tilde{\sigma}_{\tilde{g}}=A d_{\tilde{g}} \circ \tilde{\mathbf{J}}$.

IV Equivalent realization of the regularized Kepler problem

Proposition

All arrows in the above diagram are the $U(n, n)$-equivariant Poisson maps:

$$
\begin{aligned}
& T^{*} U(n) \xrightarrow{\mathbf{J}_{0}} \mathbf{u}(n, n) \stackrel{\mathbf{J}_{+-}}{\longleftrightarrow} \mathcal{T},
\end{aligned}
$$

where by the definition one has $\quad A d_{\mathcal{C}}(\tilde{\mathfrak{X}}):=\mathcal{C X} \mathcal{C}^{+}$,
$T_{\mathcal{C}}^{*}(Y, X)=\left((Y-i E)(-i Y+E)^{-1}, \frac{i}{2}(-i Y+E) X(-i Y+E)^{+}\right)$,
for $\tilde{\mathfrak{X}} \in \widetilde{\mathbf{u}(n, n)}$ and $(X, Y) \in H(n) \times H(n)$.

IV Equivalent realization of the regularized Kepler problem

The component

$$
Z=(Y-i E)(-i Y+E)^{-1}
$$

is a smooth one-to-one map of $H(n)$ into $U(n)$, which is known as Cayley transform. Hence, the unitary group $U(n)$ could be considered as a compactification of $H(n)$, Namely, in order to obtain the full group $U(n)$ one adds to Cayles image of $H(n)$ such unitary matrices Z, which satisfy the condition $\operatorname{det}(i Z+E)=0$. Thus the inverse Cayley map is defined by

$$
\begin{equation*}
Y=(Z+i E)(i Z+E)^{-1} \tag{35}
\end{equation*}
$$

if $\operatorname{det}(i Z+E) \neq 0$.

IV Equivalent realization of the regularized Kepler problem

We complete the above commutative diagram by the following $U(n, n)$-equivariant maps

$$
\begin{align*}
& U(n) \times \dot{\mathbb{C}}^{n} \subset \quad \iota \quad T^{*} U(n) \\
& \downarrow_{\mathcal{C}} \underbrace{T_{\mathcal{C}}^{*}} \\
& H(n) \times \dot{\mathbb{C}}^{n} \subset \tilde{\iota} \longrightarrow H(n) \times H(n), \tag{36}
\end{align*}
$$

where

$$
\begin{gathered}
S_{\mathcal{C}}(Y, \zeta):=\left((Y-i E)(-i Y+E)^{-1}, \frac{1}{\sqrt{2}}(-i Y+E) \zeta\right), \\
\iota(Z, \xi):=\left(Z, i \xi \xi^{+}\right) \\
\tilde{\iota}(Y, \zeta):=\left(Y, \zeta \zeta^{+}\right)
\end{gathered}
$$

IV Equivalent realization of the regularized Kepler problem

The following statements are valid:

$$
\begin{gathered}
\iota\left(U(n) \times \dot{\mathbb{C}}^{n}\right)=\mathcal{O}_{10}, \quad \mathbf{J}_{0}\left(\mathcal{O}_{10}\right)=\mathcal{N}_{10}=\mathbf{J}_{+-}\left(\mathcal{T}_{+-}^{0}\right) \\
\dot{\tilde{\mathcal{O}}}_{10}:=\tilde{\iota}\left(H(n) \times \dot{\mathbb{C}}^{n}\right)=\{(Y, X): \operatorname{dim}(\operatorname{Im}(X))=1 \text { and } X \geq 0\}, \\
\tilde{\mathbf{J}}_{0}\left(\dot{\tilde{\mathcal{O}}}_{10}\right) \subset \tilde{\mathcal{N}}_{10}=\tilde{\mathbf{J}}_{+-}\left(\tilde{\mathcal{T}}_{+-}^{0}\right)
\end{gathered}
$$

From above equalities one finds the morphism of symplectic manifolds

$$
\begin{aligned}
& \mathcal{O}_{10} / \sim \xrightarrow{\mathrm{J}_{0} / \sim} \mathcal{N}_{10} \xrightarrow{\mathrm{~J}_{+-} / \sim} \mathcal{T}_{+-}^{0} / \sim
\end{aligned}
$$

which are symplectic isomorphisms (except of $T_{\mathcal{C}}^{*} / \sim: \dot{\tilde{\mathcal{O}}}_{10} / \sim \hookrightarrow \mathcal{O}_{10} / \sim$ and $\left.\tilde{\mathrm{J}}_{0} / \sim: \dot{\tilde{\mathcal{O}}}_{10} / \sim \hookrightarrow \tilde{\mathcal{N}}_{10}\right)$. The equivalence relations \sim are defined by the reductions of respective symplectic structures from the previous diagram.

IV Equivalent realization of the regularized Kepler problem

Any element $\mathfrak{X}=\left(\begin{array}{cc}a & b \\ b^{+} & d\end{array}\right) \in \mathbf{u}(n, n)$ defines the linear function

$$
L_{\mathfrak{X}}\left(\begin{array}{cc}
\alpha & \beta \tag{38}\\
\beta^{+} & \delta
\end{array}\right):=\operatorname{Tr}\left(\left(\begin{array}{cc}
a & b \\
b^{+} & d
\end{array}\right)\left(\begin{array}{cc}
\alpha & \beta \\
\beta^{+} & \delta
\end{array}\right)\right)
$$

on the Lie-Poisson space $\left(\mathbf{u}(n, n),\{\cdot, \cdot\}_{L-P}\right)$, where the Lie-Poisson bracket $\{\cdot, \cdot\}_{L-P}$ is defined in (12). These functions satisfy

$$
\begin{equation*}
\left\{L_{\mathfrak{X}_{1}}, L_{\mathfrak{X}_{2}}\right\}_{L-P}=L_{\left[\mathfrak{x}_{1}, \mathfrak{X}_{2}\right]} . \tag{39}
\end{equation*}
$$

In the case $\mathfrak{X}_{++}=i\left(\begin{array}{cc}E & 0 \\ 0 & E\end{array}\right)$ and $\mathfrak{X}_{+-}=i\left(\begin{array}{cc}E & 0 \\ 0 & -E\end{array}\right)$ one obtains

$$
\begin{align*}
\left(L_{\mathfrak{X}_{++}} \circ \mathbf{J}_{+-}\right)(\eta, \xi) & =\eta^{+} \eta-\xi^{+} \xi=I_{+-} \tag{40}\\
\left(L_{\mathfrak{X}_{++}} \circ \mathbf{J}_{0}\right)(Z, \rho) & =0 \tag{41}\\
\left(L_{\mathfrak{X}_{+-}} \circ \mathbf{J}_{+-}\right)(\eta, \xi) & =\eta^{+} \eta+\xi^{+} \xi=: I_{++} \tag{42}\\
\left(L_{\mathfrak{X}_{+-}} \circ \mathbf{J}_{0}\right)(Z, \rho) & =-2 i \operatorname{Tr} \rho=: I_{0} \tag{43}
\end{align*}
$$

IV Equivalent realization of the regularized Kepler problem

Rewriting the above formula in the anti-diagonal realization, where

$$
\begin{align*}
\tilde{\mathfrak{X}}_{++}= & i\left(\begin{array}{cc}
E & 0 \\
0 & E
\end{array}\right)=\mathcal{C} \mathfrak{X}_{++} \mathcal{C}^{+} \text {and } \\
\tilde{\mathfrak{X}}_{+-}= & \left(\begin{array}{cc}
0 & -E \\
E & 0
\end{array}\right)=\mathcal{C} \mathfrak{X}_{+-} \mathcal{C}^{+} \text {we find } \\
& \left(L_{\tilde{\mathfrak{X}}_{++}} \circ \tilde{\mathbf{J}}_{+-}\right)(v, \zeta)=i\left(v \zeta^{+}-\zeta v^{+}\right), \tag{44}\\
& \left(L_{\tilde{\mathfrak{X}}_{++}} \circ \tilde{\mathbf{J}}_{0}\right)(Y, X)=0, \tag{45}\\
& \left(L_{\tilde{\mathfrak{X}}_{+-}} \circ \tilde{\mathbf{J}}_{+-}\right)(v, \zeta)=v^{+} v+\zeta^{+} \zeta=: \tilde{I}_{++}, \tag{46}\\
& \left(L_{\tilde{\mathfrak{X}}_{+-}} \circ \tilde{\mathbf{J}}_{0}\right)(Y, X)=\operatorname{Tr}\left(X\left(E+Y^{2}\right)\right)=: \tilde{I}_{0} . \tag{47}
\end{align*}
$$

IV Equivalent realization of the regularized Kepler problem

The functions $I_{++}, I_{0}, \tilde{I}_{++}$and \tilde{I}_{0} are invariants of the Hamiltonian
flows generated by $i\left(\begin{array}{cc}E & 0 \\ 0 & -E\end{array}\right) \in \mathbf{u}(n, n)$. So, they could be considered as Hamiltonians (generators of Hamiltonian flows) on the reduced symplectic manifolds $\mathcal{T}_{+-}^{0} / \sim, \mathcal{O}_{10} / \sim, \tilde{\mathcal{T}}_{+-}^{0} / \sim$ and $\dot{\tilde{\mathcal{O}}}_{10} / \sim$, respectively. Taking into account the symplectic manifolds isomorphisms mentioned in the diagram (37) and the commutativity of the Poisson maps from (34), we conclude that:

IV Equivalent realization of the regularized Kepler problem

The functions $I_{++}, I_{0}, \tilde{I}_{++}$and \tilde{I}_{0} are invariants of the Hamiltonian flows generated by $i\left(\begin{array}{cc}E & 0 \\ 0 & -E\end{array}\right) \in \mathbf{u}(n, n)$. So, they could be considered as Hamiltonians (generators of Hamiltonian flows) on the reduced symplectic manifolds $\mathcal{T}_{+-}^{0} / \sim, \mathcal{O}_{10} / \sim, \tilde{\mathcal{T}}_{+-}^{0} / \sim$ and $\dot{\tilde{\mathcal{O}}}_{10} / \sim$, respectively. Taking into account the symplectic manifolds isomorphisms mentioned in the diagram (37) and the commutativity of the Poisson maps from (34), we conclude that:
(i) the Hamiltonian systems: $\left(\mathcal{T}_{+-}^{0} / \sim, I_{++}\right),\left(\tilde{\mathcal{T}}_{+-}^{0} / \sim, \tilde{I}_{++}\right)$,
$\left(\mathcal{O}_{10} / \sim, I_{0}\right)$ are isomorphic with the Hamiltonian system $\left(\mathcal{N}_{10}, L_{\mathfrak{X}_{+-}}\right)$;

IV Equivalent realization of the regularized Kepler problem

The functions $I_{++}, I_{0}, \tilde{I}_{++}$and \tilde{I}_{0} are invariants of the Hamiltonian flows generated by $i\left(\begin{array}{cc}E & 0 \\ 0 & -E\end{array}\right) \in \mathbf{u}(n, n)$. So, they could be considered as Hamiltonians (generators of Hamiltonian flows) on the reduced symplectic manifolds $\mathcal{T}_{+-}^{0} / \sim, \mathcal{O}_{10} / \sim, \tilde{\mathcal{T}}_{+-}^{0} / \sim$ and $\dot{\tilde{\mathcal{O}}}_{10} / \sim$, respectively. Taking into account the symplectic manifolds isomorphisms mentioned in the diagram (37) and the commutativity of the Poisson maps from (34), we conclude that:
(i) the Hamiltonian systems: $\left(\mathcal{T}_{+-}^{0} / \sim, I_{++}\right),\left(\tilde{\mathcal{T}}_{+-}^{0} / \sim, \tilde{I}_{++}\right)$,
$\left(\mathcal{O}_{10} / \sim, I_{0}\right)$ are isomorphic with the Hamiltonian system $\left(\mathcal{N}_{10}, L_{\mathfrak{X}_{+-}}\right)$;
(ii) the Hamiltonian system $\left(\dot{\tilde{\mathcal{O}}}_{10} / \sim, \tilde{I}_{0}\right)$ is extended (regularized) by symplectic $\operatorname{map}\left(T_{\mathcal{C}}^{*} / \sim\right): \dot{\tilde{\mathcal{O}}}_{10} / \sim \hookrightarrow \mathcal{O}_{10} / \sim$ to the Hamiltonian system $\left(\mathcal{O}_{10} / \sim, I_{0}\right)$.

IV Equivalent realization of the regularized Kepler problem

Integrals of motion $M: H(n) \times H(n) \rightarrow H(n)$ and $R: H(n) \times H(n) \rightarrow H(n)$ for the Hamiltonian \tilde{I}_{0} are given in matrix form by

$$
\begin{equation*}
M:=i[X, Y] \quad \text { and } \quad R:=X+Y X Y \text {. } \tag{48}
\end{equation*}
$$

IV Equivalent realization of the regularized Kepler problem

Integrals of motion $M: H(n) \times H(n) \rightarrow H(n)$ and $R: H(n) \times H(n) \rightarrow H(n)$ for the Hamiltonian \tilde{I}_{0} are given in matrix form by

$$
\begin{equation*}
M:=i[X, Y] \quad \text { and } \quad R:=X+Y X Y . \tag{48}
\end{equation*}
$$

The Hamilton equations defined by \tilde{I}_{0} are

$$
\begin{align*}
\frac{d}{d t} Y & =E+Y^{2}, \tag{49}\\
\frac{d}{d t} X & =-(X Y-Y X),
\end{align*}
$$

i.e. they could be classified as a matrix Riccati type equations. In order to obtain the solution of (49) we note that after passing to ($\mathcal{T}_{+-}^{0} / \sim, I_{++}$) they asssume the form of a linear equations solved by

$$
\sigma_{+-}^{t}\binom{\eta}{\xi}=\left(\begin{array}{cc}
e^{i t} E & 0 \tag{50}\\
0 & e^{-i t E}
\end{array}\right)\binom{\eta}{\xi},
$$

i.e. the Hamiltonian flow is generated by $\mathfrak{X}_{+-} \in \mathbf{u}(n, n)$.

IV Equivalent realization of the regularized Kepler problem

Therefore, going through the symplectic manifold isomorphism presented in (37), we obtain the solution

$$
\begin{align*}
& Y(t)=(Y \cosh t-i E \sinh t)(i Y \sinh t+E \cosh t)^{-1} \\
& X(t)=(i Y \sinh t+E \cosh t) X(i Y \sinh t+E \cosh t)^{+} \tag{51}
\end{align*}
$$

of (32), by specifying the transformation formula (29) to $g(t)=\mathcal{C}^{+}\left(\begin{array}{cc}e^{t} E & 0 \\ 0 & e^{-t E}\end{array}\right) \mathcal{C}$.

V Generalization of Kuastaanheimo-Stiefel transformation

We consider the case $n=2$ in details. Using the Poisson morphism presented in the lower lines of (34) and (37) we find the following relations

$$
\begin{align*}
X & =\zeta \zeta^{+} \tag{52}\\
v & =Y \zeta \tag{53}
\end{align*}
$$

between $(Y, X) \in H(n) \times H(n)$ and $\binom{v}{\zeta} \in \tilde{\mathcal{T}}_{+-}^{0}$. The equation (52) is equivalent to the conditions $\operatorname{det} X=0$ and $0 \neq X \geq 0$.

V Generalization of Kuastaanheimo-Stiefel transformation

For fixed $\binom{v}{\zeta} \in \tilde{\mathcal{T}}_{+-}^{0}$ the two solutions Y_{1} and Y_{2} of the equation (53) are related by

$$
\begin{equation*}
Y_{2}=Y_{1}+t \varepsilon \bar{\zeta}(\varepsilon \bar{\zeta})^{+}, \tag{54}
\end{equation*}
$$

where $\varepsilon:=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \zeta \in \dot{\mathbb{C}}^{n}$ and $t \in \mathbb{R}$. Expanding

$$
\begin{aligned}
& (Y, X) \in H(2) \times H(2) \text { in Pauli matrices } \sigma_{0}:=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \\
& \sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}:=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \text { and } \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \text { i.e. }
\end{aligned}
$$

$$
\begin{equation*}
Y=y_{\mu} \sigma_{\mu} \text { and } X=x^{\mu} \sigma_{\mu} \tag{55}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\tilde{\gamma}_{0}=2 y_{\mu} d x^{\mu} . \tag{56}
\end{equation*}
$$

V Generalization of Kuastaanheimo-Stiefel transformation

The elements $\varepsilon \bar{\zeta}(\varepsilon \bar{\zeta})^{+}$, where $\zeta \in \dot{\mathbb{C}}^{n}$, spans the degeneracy direction for symplectic form $d \tilde{\gamma}_{0}$ restricted to submanifold of $H(2) \times H(2)$ defined by the considtions $\operatorname{det} X=0$ and $0 \neq X \geq 0$. Therefore, assuming in (54) $t=-\frac{1}{\zeta+\zeta} \operatorname{Tr}\left(Y_{1}\right)$, we find that equation (53) has unique solution $Y \in H(2)$ such that $2 y_{0}=\operatorname{Tr}(Y)=0$. From $y_{0}=0$ and $\operatorname{det} X=x^{0}-\vec{x}^{2}=0$ we see that $(\vec{y}, \vec{x}) \in \mathbb{R}^{3} \times \dot{\mathbb{R}}^{3}$ can be considered as a canonical coordinates on the reduced phase space
$\mathcal{P}_{0}:=\{(Y, X) \in H(2) \times \dot{H(2)}: \operatorname{Tr}(Y)=0$ and $\operatorname{det} X=0,0 \neq X \geq 0\}$,
where $\dot{H(2)}:=H(2) \backslash\{0\}$ and $\dot{\mathbb{R}}^{3}:=\mathbb{R}^{3} \backslash\{0\}$. The above means that $\mathcal{P}_{0} \cong \mathbb{R}^{3} \times \dot{\mathbb{R}}^{3}$ and the canonical form $\tilde{\gamma}_{0}$ after restriction to \mathcal{P}_{0} is given by

$$
\begin{equation*}
\left.\tilde{\gamma}_{0}\right|_{\mathcal{P}_{0}}=2 \vec{y} d \cdot \vec{x}=2 y_{k} d x^{k} . \tag{58}
\end{equation*}
$$

V Generalization of Kuastaanheimo-Stiefel transformation

Using the identity

$$
\begin{equation*}
\sigma_{k} \sigma_{l}+\sigma_{l} \sigma_{k}=2 \delta_{k l} \tag{59}
\end{equation*}
$$

for Pauli matrices $\sigma_{k}, k=1,2,3$, we find that the Hamiltonian \tilde{I}_{0}, defined in (47), after restriction to \mathcal{P}_{0} assumes the following form

$$
\begin{equation*}
H_{0}=\left.\tilde{I}_{0}\right|_{\mathcal{P}_{0}}=\|\vec{x}\|\left(1+\vec{y}^{2}\right) . \tag{60}
\end{equation*}
$$

Let us note that $\|\vec{x}\|=x_{0}=\zeta^{+} \zeta>0$.

V Generalization of Kuastaanheimo-Stiefel transformation

Summing up the above facts we state that the Hamiltonian system $\left(H(2) \times H(2), d \tilde{\gamma}_{0}, \tilde{I}_{0}\right)$ after reduction to $\left(\mathcal{P}_{0}, 2 d \vec{y} \wedge d \vec{x}, H_{0}\right)$ is exactly the 3-dimensional Kepler system written in the "fictitious time" s which is related to the real time t via the rescaling

$$
\begin{equation*}
\frac{d s}{d t}=\frac{1}{\|\vec{x}\|} \tag{61}
\end{equation*}
$$

V Generalization of Kuastaanheimo-Stiefel transformation

In order to express $(\vec{y}, \vec{x}) \in \mathbb{R}^{3} \times \dot{\mathbb{R}}^{3}$ by $\binom{v}{\zeta} \in \tilde{\mathcal{T}}_{+-}^{0}$ we put $Y=\vec{y} \vec{\sigma}=y_{k} \sigma_{k}$ and multiply the equation (53) by $\zeta^{+} \sigma_{l}$. Then, using (59) and (52) we obtain the one-to-one map

$$
\begin{equation*}
\vec{y}=\frac{1}{\zeta^{+} \zeta} \frac{1}{2}\left(v^{+} \vec{\sigma} \zeta+\zeta^{+} \vec{\sigma} v\right), \quad \vec{x}=\zeta^{+} \vec{\sigma} \zeta, \tag{62}
\end{equation*}
$$

of $\dot{\tilde{\mathcal{T}}}_{+-}^{0} / \sim$ onto \mathcal{P}_{0}, where $\dot{\tilde{\mathcal{T}}}_{+-}^{0}:=\tilde{\mathcal{T}}_{+-}^{0} \backslash\left\{(v, 0)^{T} \in \mathbb{C}^{2} \oplus \mathbb{C}^{2}: v \in \mathbb{C}^{2}\right\}$. This map is known in literature of celestial mechanics as Kuastaanheimo-Stiefel transformation.

V Generalization of Kuastaanheimo-Stiefel transformation

Here this transformation $\kappa: \dot{\tilde{\mathcal{T}}}_{+-}^{0} / \sim \rightarrow \mathcal{P}_{0}$ is a restriction

$$
\begin{array}{cc}
\dot{\tilde{\mathcal{T}}}_{+-}^{0} / \sim & \kappa \\
\cap & \mathcal{P}_{0} \cong \tilde{\mathcal{O}}_{10} / \sim \tag{63}\\
& \cap_{T_{\mathcal{C}}^{*} / \sim} \\
\tilde{\mathcal{T}}_{+-}^{0} / \sim \xrightarrow[\sim]{\sim} \longrightarrow & \mathcal{O}_{10 / \sim}
\end{array}
$$

to $\dot{\tilde{\mathcal{T}}}_{+-}^{0}$ of the symplectic diffeomorphism $\tilde{\kappa}: \tilde{\mathcal{T}}_{+-}^{0} \xrightarrow{\sim} \mathcal{O}_{10} / \sim$, defined as the superposition of respective symplectic diffeomorphisms from diagram (37).

V Generalization of Kuastaanheimo-Stiefel transformation

- It is reasonable to interpret Hamiltonian systems $\left(\mathcal{T}_{+-}^{0} / \sim, I_{++}\right)$, $\left.\left(\tilde{\mathcal{T}}_{+-}^{0} / \sim, \tilde{I}_{++}\right), \mathcal{O}_{10} / \sim, I_{0}\right)$ and $\left(\mathcal{N}_{10}, L_{\mathcal{X}_{+-}}\right)$as the various equivalent realizations of the regularized $(2 n-1)$-dimensional Kepler system.
- In the particular case the symplectic diffeomorphism $\tilde{\kappa}: \tilde{\mathcal{T}}_{+-}^{0} \xrightarrow{\sim} \mathcal{O}_{10} / \sim$ could be considered as a generalization of Kuastaanheimo-Stiefel transformation for the arbitrary dimension.

VI Generalized $(2 n-1)$-dimensional Kepler problem

Assuming for $z \in \mathbb{C}$ and $l \in \mathbb{Z}$ the convention

$$
z^{l}:= \begin{cases}z^{l} & \text { for } l \geq 0 \tag{64}\\ \bar{z}^{-l} & \text { for } l<0\end{cases}
$$

we define the following Hamiltonian

$$
\begin{align*}
H=h_{0}\left(\left|\eta_{1}\right|^{2}\right. & \left.\ldots,\left|\eta_{n}\right|^{2},\left|\xi_{1}\right|^{2}, \ldots,\left|\xi_{n}\right|^{2}\right) \\
& \quad+g_{0}\left(\left|\eta_{1}\right|^{2}, \ldots,\left|\eta_{n}\right|^{2},\left|\xi_{1}\right|^{2}, \ldots,\left|\xi_{n}\right|^{2}\right) \\
& \times\left(\eta_{1}^{k_{1}} \ldots \eta_{n}^{k_{n}} \xi_{1}^{l_{1}} \ldots \xi_{n}^{l_{n}}+\eta_{1}^{-k_{1}} \ldots \eta_{n}^{-k_{n}} \xi_{1}^{-l_{1}} \ldots \xi_{n}^{-l_{n}}\right) \tag{65}
\end{align*}
$$

on the symplectic manifold ($\mathbb{C}^{2 n}, d \gamma_{+-}$), where h_{0} and g_{0} are arbitrary smooth functions of $2 n$ real variables and $k_{1}, \ldots k_{n}, l_{1}, \ldots, l_{n} \in \mathbb{Z}$, where $k_{1}+\ldots+k_{n}=0=l_{1}+\ldots+l_{n}$. Since $\left\{I_{+-}, H\right\}=0$ one can reduce this system to $\mathcal{T}_{+-}^{0} / \sim$.

VI Generalized ($2 n-1$)-dimensional Kepler problem

Ending, we write the Hamiltonian (65) in the more explicit form for the case $n=2$, i.e on ($\left.\mathbb{R}^{3} \times \dot{\mathbb{R}^{3}}, 2 d \vec{y} \wedge d \vec{x}\right)$.
In this case the integrals of motion M and R can be written in terms of Pauli matrices

$$
M=M_{0} E+\vec{M} \cdot \vec{\sigma} \quad \text { and } \quad R=R_{0} E+\vec{R} \cdot \vec{\sigma},
$$

where $M_{0}=0, \quad R_{0}=\frac{1}{2}\|\vec{x}\|\left(1+\vec{y}^{2}\right)$ and

$$
\begin{gathered}
\vec{M}=2 \vec{y} \times \vec{x} \\
\vec{R}=\left(1-\vec{y}^{2}\right) \vec{x}+2 \vec{y}(\vec{x} \cdot \vec{y})
\end{gathered}
$$

are angular momentum and Runge-Lenz vector, respectively.

VI Generalized $(2 n-1)$-dimensional Kepler problem

Using the linear relation

$$
\left(\begin{array}{l}
\left|\eta_{1}\right|^{2} \\
\left|\eta_{2}\right|^{2} \\
\left|\xi_{1}\right|^{2} \\
\left|\xi_{2}\right|^{2}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
R_{0} \\
R_{3} \\
M_{0} \\
M_{3}
\end{array}\right)
$$

and define $M_{+}:=M_{1}+i M_{2}$ and $M_{-}:=M_{1}-i M_{2}$

VI Generalized $(2 n-1)$-dimensional Kepler problem

Using the linear relation

$$
\left(\begin{array}{l}
\left|\eta_{1}\right|^{2} \\
\left|\eta_{2}\right|^{2} \\
\left|\xi_{1}\right|^{2} \\
\left|\xi_{2}\right|^{2}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
R_{0} \\
R_{3} \\
M_{0} \\
M_{3}
\end{array}\right)
$$

and define $M_{+}:=M_{1}+i M_{2}$ and $M_{-}:=M_{1}-i M_{2}$ we write the Hamiltonian H as follows

$$
\begin{gathered}
\tilde{H}=\tilde{h}_{0}\left(R_{0}, R_{3}, M_{0}, M_{3}\right)+\tilde{g}_{0}\left(R_{0}, R_{3}, M_{0}, M_{3}\right) \times \\
\times\left(\left(R_{\sigma}-M_{\sigma}\right)^{k}\left(R_{\sigma^{\prime}}+M_{\sigma^{\prime}}\right)^{l}+\left(R_{-\sigma}-M_{-\sigma}\right)^{k}\left(R_{-\sigma^{\prime}}+M_{-\sigma^{\prime}}\right)^{l}\right),
\end{gathered}
$$

where $\sigma, \sigma^{\prime}=+,-, k, l \in \mathbb{N} \cup\{0\}$ and $\tilde{h}_{0}, \tilde{g}_{0}$ are arbitrary smooth functions. Let us note that $R_{0}=\frac{1}{2} I_{0}$.

THANK YOU FOR ATTENTION

