
Introduction Integrability Superintegrability Conclusion

On rotationally invariant (super)integrability
with magnetic fields in 3D

Sébastien Bertrand
in collaboration with L. Šnobl and A. Marchesiello

Department of Physics,
Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague,

email: bertrseb@fjfi.cvut.cz

XXIst International Conference – Geometry, Integrability and Quantization
June 3–8, 2019 in Varna, Bulgaria

1



Introduction Integrability Superintegrability Conclusion

Table of contents

Introduction
Integrability and electromagnetic fields

Integrability for the rotationally invariant non-subgroup type
Circular parabolic case
Prolate spheroidal case
Oblate spheroidal case

Superintegrability in the circular parabolic case
First order additional integrals of motion
A second order additional integral of motion

Conclusions and future perspectives

2



Introduction Integrability Superintegrability Conclusion

What is (Liouville) integrability?
Let us consider a N-dimensional Hamiltonian system,

H =
1
2

N∑
i=1

g ii(~x)(pA
i )

2
+ W (~x),

which takes value on a 2N-dimensional phase space (~x , ~p). For
this Hamiltonian system to be said (Liouville) integrable, there
must exist N − 1 integrals of motion Xi (in addition to the
Hamiltonian) that are in involution, i.e.

dXi

dt
= {Xi ,H} = 0, {Xi ,Xj} = 0

and such that H and all Xi are functionally independent.
The Poisson bracket is defined as

{a,b} =
N∑

i=1

(
∂a
∂xi

∂b
∂pi
− ∂b
∂xi

∂a
∂pi

)
.
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What is superintegrability?

For the same integrable Hamiltonian system to be called
superintegrable, there must exist M (where 1 ≤ M ≤ N − 1)
additional integrals of motion Yj , i.e.

{Yj ,H} = 0

and H, all Xi and all Yj must be functionally independent, i.e.

Rank
[
∂(H,Xi ,Yj)

∂(~x , ~p)

]
= N + M.

Note: Yj+1 is not required to be in involution with (Xi ,Yj).
When M = 1, the system is minimally superintegrable.
When M = N − 1, the system is maximally superintegrable.
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Quantum integrability and superintegrability

The quantum version is defined in a similar way:
1. The classical phase space coordinates must be replaced

by their associated quantum operators.
2. The Hamiltonian and the integrals of motion must be

well-defined Hermitian operators.
3. The Poisson bracket must be replaced by the commutator.

In the following results, no purely quantum system exists, i.e.
the quantum results are equivalent to the classical ones.
Hence, we will only consider the classical version from now on,
unless specified otherwise.
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Properties
For the classical case:
• Separation of the Hamilton–Jacobi equation in one (or

more) coordinate system.
• For superintegrable systems, the trajectories are restrained

to a N −M subspace.
• For maximally superintegrable systems, finite trajectories

are closed and periodic.
• A resilience to perturbations.

For the quantum case:
• Separation of the Schrödinger equation in one (or more)

coordinate system.
• Degeneration of the energy levels.
• Conjecture that all maximally superintegrable systems are

exactly solvable.
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Leading order terms
For a quadratic integral in the 3D Cartesian coordinates,

X =
∑

hi(~x)(pA
i )

2 +
1
2

∑
|εijk |ni(~x)pA

j pA
k +

∑
si(~x)pA

i + m(~x),

where pA
k = pk + Ak (~x), with or without a magnetic field, the

(ten) third order equations are the same, i.e.

∂ihi = ~∇ · ~n = 0, i = 1,2,3,
∂ihj + ∂jnk = 0, i 6= j 6= k 6= i , i , j , k = 1,2,3.

Hence, the leading order terms are given by∑
1≤i≤j≤3

aijpA
i pA

j +
∑

1≤i≤j≤3

bijLA
i LA

j +
∑
i,j

cijpA
i LA

j ,

where LA
i = εijkxjpA

k .
7



Introduction Integrability Superintegrability Conclusion

Systems of coordinates allowing separation of variables of the Hamilton–Jacobi
equation and the leading order terms of the second order integrals of motion.

Coordinate systems X1 X2

1 Cartesian (px)
2 (py )

2

2 Cylindrical (Lz)
2 (pz)

2

3 Elliptic cylindrical (pz)
2 (Lz)

2 + a(px)
2

4 Parabolic cylindrical (pz)
2 pyLz

5 Spherical (Lz)
2 L2

6 Prolate spheroidal (Lz)
2 L2 − a2(px)

2 − a2(py )
2

7 Oblate spheroidal (Lz)
2 L2 + a2(px)

2 + a2(py )
2

8 Circular parabolic (Lz)
2 pyLx − pxLy

9 Conical L2 b2(Lx)
2 + c2(Ly )

2

10 Ellipsoidal ... ...
11 Paraboloidal ... ...

L2 = (Lx)
2 + (Ly )

2 + (Lz)
2
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Electromagnetic field

For a 3D Hamiltonian with an electromagnetic field, one must
consider the scalar potential W (~x) and the vector potential A(~x)
that can be written as a 1-form, i.e.

A = Ax(~x)dx + Ay (~x)dy + Az(~x)dz

and it is linked to the magnetic field

B = Bx(~x)dy ∧ dz + By (~x)dz ∧ dx + Bz(~x)dz ∧ dy

by the relations
Bi = εijk∂jAk ,

where B is invariant under the transformation Ã = A +∇χ.
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Determining equations of {H,X} = 0
Second order determining equations:

∂xs1 = n2B2 − n3B3, ∂ys2 = n3B3 − n1B1, ∂zs3 = n1B1 − n2B2,
∂ys1 + ∂xs2 = n1B2 − n2B1 + 2(h1 − h2)B3,
∂zs1 + ∂xs3 = n3B1 − n1B3 + 2(h3 − h1)B2,
∂ys3 + ∂zs2 = n2B3 − n3B2 + 2(h2 − h3)B1.

First order determining equations:

∂xm = 2h1∂xW + n3∂yW + n2∂zW + s3B2 − s2B3,

∂ym = n3∂xW + 2h2∂yW + n1∂zW + s1B3 − s3B1,

∂zm = n2∂xW + n1∂yW + 2h3∂zW + s2B1 − s1B2.

Zeroth order determining equation:

~s · ∇W+
~2

4
(∂zn1∂zB1 − ∂yn1∂yB1 + ∂xn2∂xB2 − ∂zn2∂zB2

+∂yn3∂yB3 − ∂xn3∂xB3 + ∂xn1∂yB2 − ∂yn2∂xB1) = 0.
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Integrability for the
circular parabolic case

X1 = LA
x pA

y − LA
y pA

x + ... X2 = (LA
z )

2 + ...

(Laplace–Runge–Lenz component)
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The circular parabolic coordinates
The circular parabolic coordinates are related to the 3D
Cartesian coordinates by the transformation

x = ξη cosφ,
y = ξη sinφ,
z = 1

2

(
ξ2 − η2) ,

metric:
g11 = ξ2 + η2,

g22 = ξ2 + η2,

g33 = ξ2η2,
gij = 0, i 6= j .
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The associated Hamiltonian
and the integrals of motions

In the circular parabolic coordinates, the Hamiltonian is

H =
1
2

(
(pA
ξ )

2

ξ2 + η2 +
(pA
η )

2

ξ2 + η2 +
(pA
φ)

2

ξ2η2

)
+ W (ξ, η, φ)

and the integrals of motion are

X1 =
η2

2(ξ2 + η2)
(pA
ξ )

2 − ξ2

2(ξ2 + η2)
(pA
η )

2 +
1
2

(
1
ξ2 −

1
η2

)
(pA
φ)

2 + ...

X2 =(pA
φ)

2 + ...
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Solution to the 18 second order equations

The first order coefficients

sξ1 =
c1 ξ

ξ2 + η2 , sη1 =
−c1 η

ξ2 + η2 , sφ1 =
f
(
η2)− g

(
ξ2)

ξ2 + η2 ,

sξ2 = sη2 = 0, sφ2 = 2
ξ2f
(
η2)+ η2g

(
ξ2)

η2 + ξ2 ,

and the magnetic field components

Bξ = ξ2∂η

(
g
(
ξ2)− f

(
η2)

η2 + ξ2

)
, Bη = η2∂ξ

(
g
(
ξ2)− f

(
η2)

η2 + ξ2

)
,

Bφ = 0, A = −
ξ2f
(
η2)+ η2g

(
ξ2)

η2 + ξ2 dφ.
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Solution to the remaining equations
The scalar potential is

W (ξ, η, φ) =
η2β

(
ξ2)− ξ2α

(
η2)

ξ2η2
(
η2 + ξ2

) +
1
2

(
f
(
η2)− g

(
ξ2)

η2 + ξ2

)2

and the integrals of motion are

X1 =
η2(pA

ξ )
2 − ξ2(pA

η )
2

2
(
η2 + ξ2

) +
1
2

(
1
ξ2 −

1
η2

)
(pA
φ)

2

+

(
f
(
η2)− g

(
ξ2)

η2 + ξ2

)
pA
φ +

ξ4α
(
η2)+ η4β

(
ξ2)

η2ξ2(η2 + ξ2)
,

X2 =

(
pA
φ +

ξ2f
(
η2)+ η2g

(
ξ2)

η2 + ξ2

)2

.

The magnetic field remains unchanged.
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Integrability for the
prolate spheroidal case

X1 = (LA)2 − a2 (pA
x )

2 − a2 (pA
y )

2 + ... X2 = (LA
z )

2 + ...
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The prolate spheroidal coordinates
The prolate spheroidal coordinates are related to the 3D
Cartesian coordinates by the transformation

x = a sinh(ξ) sin(η) cos(φ),
y = a sinh(ξ) sin(η) sin(φ),
z = a cosh(ξ) cos(η),

metric:
g11 = a2(sinh2(ξ) + sin2(η)),

g22 = a2(sinh2(ξ) + sin2(η)),

g33 = a2 sinh2(ξ) sin2(η),
gij = 0, i 6= j .

17



Introduction Integrability Superintegrability Conclusion

Associated integrable physical system

The scalar potential is

W =
α(η) + β(ξ)

2a2(sinh2(ξ) + sin2(η))
+

1
8

(
f (η)− g(ξ)

a(sinh2(ξ) + sin2(η))

)2

.

The potential vector can be chosen as

Aξ = Aη = 0, Aφ = −sin2(η)g(ξ) + sinh2(ξ)f (η)
2(sinh2(ξ) + sin2(η))

,

such that the magnetic field is

Bξ = ∂ηAφ, Bη = −∂ξAφ, Bφ = 0.
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Associated integrals of motion

X1 =
sinh2(ξ)(pA

η )
2 − sin2(η)(pA

ξ )
2

sinh2(ξ) + sin2(η)
+

sinh2(ξ)− sin2(η)

sinh2(ξ) sin2(η)
(pA
φ)

2

+

(
g(ξ)− f (η)

sinh2(ξ) + sin2(η)

)
pA
φ +

sinh2(ξ)α(η)− sin2(η)β(ξ)

sinh2(ξ) + sin2(η)
,

X2 =

(
pA
φ +

sinh2(ξ)f (η) + sin2(η)g(ξ)
2(sinh2(ξ) + sin2(η))

)2

.
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Integrability for the
oblate spheroidal case

X1 = (LA)2+a2 (pA
x )

2+a2 (pA
y )

2 + ... X2 = (LA
z )

2 + ...
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The oblate spheroidal coordinates
The oblate spheroidal coordinates are related to the 3D
Cartesian coordinates by the transformation

x = a cosh(ξ) sin(η) cos(φ),
y = a cosh(ξ) sin(η) sin(φ),
z = a sinh(ξ) cos(η),

metric:
g11 = a2(cosh2(ξ)− sin2(η)),

g22 = a2(cosh2(ξ)− sin2(η)),

g33 = a2 cosh2(ξ) sin2(η),
gij = 0, i 6= j .
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Associated integrable physical system

The scalar potential is

W =
α(η) + β(ξ)

2a2(cosh2(ξ)− sin2(η))
− 1

8

(
f (η)− g(ξ)

a(cosh2(ξ)− sin2(η))

)2

.

The potential vector can be chosen as

Aξ = Aη = 0, Aφ =
sin2(η)g(ξ)− cosh2(ξ)f (η)

2(cosh2(ξ)− sin2(η))
,

such that the magnetic field is

Bξ = ∂ηAφ, Bη = −∂ξAφ, Bφ = 0.

22



Introduction Integrability Superintegrability Conclusion

Associated integrals of motion

X1 =
sin2(η)(pA

ξ )
2 + cosh2(ξ)(pA

η )
2

cosh2(ξ)− sin2(η)
+

cosh2(ξ) + sin2(η)

cosh2(ξ) sin2(η)
(pA
φ)

2

+

(
f (η)− g(ξ)

cosh2(ξ)− sin2(η)

)
pA
φ +

cosh2(ξ)α(η) + sin2(η)β(ξ)

cosh2(ξ)− sin2(η)
,

X2 =

(
pA
φ +

cosh2(ξ)f (η)− sin2(η)g(ξ)
2(cosh2(ξ)− sin2(η))

)2

.
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Superintegrability:

Linear integrals
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Additional first order integrals of motion

A general first order integral of motion takes the form

Y = k1pA
x + k2pA

y + k3pA
z + k4LA

x + k5LA
y+k6LA

z + m3(x , y , z)

and such that
{H,Y} = 0.

The integral Y does not need to be in involution with the other
integrals of motion.

For the circular parabolic case, we distinguish the three
following systems that are superintegrable with at least one
additional linear integral of motion for which the magnetic field
does not vanish completely.
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Case 1: pA
z + m3(x , y , z)

H =
1
2

(
(pA

x )
2 + (pA

y )
2 + (pA

z )
2
)
+

ω

x2 + y2 −
1
8

b2
z

(
x2 + y2

)
,

B = bzdx ∧ dy ,

X1 = LA
x pA

y − LA
y pA

x + bzzLA
z −

1
4

b2
zz
(

x2 + y2
)
− 2ωz

x2 + y2 ,

X̃2 = LA
z −

1
2

bz

(
x2 + y2

)
,

Y3 = pA
z .

There is free motion along the z-axis.
The magnetic field is constant and oriented along the z-axis.
This system belongs to all previously studied cases.
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Case 2: pA
x + m3(x , y , z) and pA

y + m4(x , y , z)

H =
1
2

(
(pA

x )
2 + (pA

y )
2 + (pA

z )
2
)
+

b2
zz2

2
,

B = bzdx ∧ dy ,
X1 = LA

x pA
y − LA

y pA
x + bzzLA

z ,

X̃2 = LA
z −

1
2

bz

(
x2 + y2

)
,

Y3 = pA
x + bzy ,

Y4 = pA
y − bzx .

The magnetic field is constant and oriented along the z-axis.
This Hamiltonian is linked to the center of mass of the
two-electron quantum dots for special values of its magnetic
field and its confinement frequencies.
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Case 3: LA
x + m3(x , y , z) and LA

y + m4(x , y , z)

H =
1
2
((pA

x )
2 + (pA

y )
2 + (pA

z )
2) +

b2
m

2R2 +
ω

2R
,

B =
bm

R3 (xdy ∧ dz + ydz ∧ dx + zdx ∧ dy) ,

X1 = LA
x pA

y − LA
y pA

x −
bmLA

z
R
− ωz

2R
,

X̃2 = LA
z +

bmz
R

,

Y3 = LA
x +

bmx
R

, R =
√

x2 + y2 + z2,

Y4 = LA
y +

bmy
R

.

This system is characterized by the magnetic field of a
magnetic monopole together with the (3D) Coulomb potential.
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Superintegrability:

The special case:

Y = (LA)2 + ...
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Magnetic field
The associated magnetic field is composed of the superposition
of three types of magnetic fields, i.e.

B = Bz + Bm + Bn.

Constant magnetic field:

Bz = bzdx ∧ dy .

Magnetic monopole:

Bm =
bm

R3 (xdy ∧ dz + ydz ∧ dx + zdx ∧ dy) .

and a magnetic field of the form:

Bn =
bn

R3

(
xzdy ∧ dz + yzdz ∧ dx + (R2 + z2)dx ∧ dy

)
.
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“New” magnetic field(
xz
R3 ,

yz
R3 ,

R2 + z2

R3

)
, |B| ≤ 2|bn|

R
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(Minimally) superintegrable Hamiltonian

H =
(pA

x )
2 + (pA

y )
2 + (pA

z )
2

2
+

u1

x2 + y2 +
u2

R
+

u3z(
x2 + y2

)
R

+
b2

m
2R2 +

bzbmz
2R

−
bzbn

(
x2 + y2)
2R

+
bmbnz

R2 − b2
n(x2 + y2)

2R2 − 1
8

b2
z

(
x2 + y2

)
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Integrals of motion
X1 = pA

y LA
x − pA

x LA
y +

(
bm

R
+

bnz
R

+ bzz
)

LA
z

−
bmbz

(
x2 + y2)
2R

−
bnbzz

(
x2 + y2)

2R
− b2

zz
4

(
x2 + y2

)
− 2u1z

x2 + y2 −
u2z
R
−

u3
(
R2 + z2)(

x2 + y2
)

R
,

X̃2 = LA
z +

bmz
R
−

bn
(
x2 + y2)

R
− bz

2

(
x2 + y2

)
,

Y3 = (LA)2 −
(

2bnR + bzR2
)

LA
z +

2u1z2

x2 + y2 +
2u3zR
x2 + y2

+bnbz

(
x2 + y2

)
R + b2

n

(
x2 + y2

)
+

1
4

b2
z

(
x2 + y2

)
R2.

The algebra of the integrals of motion closes polynomially and
there exists no additional first or second order integral.
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Conclusions

• We have investigated integrability for the three cases:
Circular parabolic, Prolate and Oblate spheroidal.

• In all three cases, the quadratic integral L2
z + ...

degenerates to a first order integral of motion and
the magnetic field is not constrained by the lower order
determining equations

• For the circular parabolic case, all additional first order
integrals of motion have been found. All these systems
already appeared in the literature.

• A particular additional second order integral of motion
(L2 + ...) leads to an interesting new superintegrable
system.

• Among these results, no purely quantum system exists.
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Future perspectives

It would be interesting to:
• establish or disprove the equivalence of integrability and

the separability of the Hamilton–Jacobi and the
Schrödinger equations admitting magnetic forces.

• study the remaining integrable cases of non-subgroup type.
(Work in progress.)

• investigate the superintegrability of the prolate and oblate
spheroidal cases.

• develop more efficient techniques to deal with higher order
integrals for superintegrability.

• extend such results to a relativistic approach for additional
physical applications.
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Thank you
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