On rotationally invariant (super)integrability with magnetic fields in 3D

Sébastien Bertrand
in collaboration with L. Šnobl and A. Marchesiello
Department of Physics,
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,
email: bertrseb@fjfi.cvut.cz

XXIIt International Conference - Geometry, Integrability and Quantization June 3-8, 2019 in Varna, Bulgaria

Table of contents

Introduction
Integrability and electromagnetic fields
Integrability for the rotationally invariant non-subgroup type
Circular parabolic case
Prolate spheroidal case
Oblate spheroidal case
Superintegrability in the circular parabolic case
First order additional integrals of motion
A second order additional integral of motion
Conclusions and future perspectives

What is (Liouville) integrability?

Let us consider a N -dimensional Hamiltonian system,

$$
H=\frac{1}{2} \sum_{i=1}^{N} g^{i}(\vec{x})\left(p_{i}^{A}\right)^{2}+W(\vec{x}),
$$

which takes value on a $2 N$-dimensional phase space (\vec{x}, \vec{p}). For this Hamiltonian system to be said (Liouville) integrable, there must exist $N-1$ integrals of motion X_{i} (in addition to the Hamiltonian) that are in involution, i.e.

$$
\frac{d X_{i}}{d t}=\left\{X_{i}, H\right\}=0, \quad\left\{X_{i}, X_{j}\right\}=0
$$

and such that H and all X_{i} are functionally independent. The Poisson bracket is defined as

$$
\{a, b\}=\sum_{i=1}^{N}\left(\frac{\partial a}{\partial x_{i}} \frac{\partial b}{\partial p_{i}}-\frac{\partial b}{\partial x_{i}} \frac{\partial a}{\partial p_{i}}\right) .
$$

What is superintegrability?

For the same integrable Hamiltonian system to be called superintegrable, there must exist M (where $1 \leq M \leq N-1$) additional integrals of motion Y_{j}, i.e.

$$
\left\{Y_{j}, H\right\}=0
$$

and H, all X_{i} and all Y_{j} must be functionally independent, i.e.

$$
\operatorname{Rank}\left[\frac{\partial\left(H, X_{i}, Y_{j}\right)}{\partial(\vec{x}, \vec{p})}\right]=N+M
$$

Note: Y_{j+1} is not required to be in involution with $\left(X_{i}, Y_{j}\right)$. When $M=1$, the system is minimally superintegrable. When $M=N-1$, the system is maximally superintegrable.

Quantum integrability and superintegrability

The quantum version is defined in a similar way:

1. The classical phase space coordinates must be replaced by their associated quantum operators.
2. The Hamiltonian and the integrals of motion must be well-defined Hermitian operators.
3. The Poisson bracket must be replaced by the commutator.

In the following results, no purely quantum system exists, i.e. the quantum results are equivalent to the classical ones. Hence, we will only consider the classical version from now on, unless specified otherwise.

Properties

For the classical case:

- Separation of the Hamilton-Jacobi equation in one (or more) coordinate system.
- For superintegrable systems, the trajectories are restrained to a $N-M$ subspace.
- For maximally superintegrable systems, finite trajectories are closed and periodic.
- A resilience to perturbations.

For the quantum case:

- Separation of the Schrödinger equation in one (or more) coordinate system.
- Degeneration of the energy levels.
- Conjecture that all maximally superintegrable systems are exactly solvable.

Leading order terms

For a quadratic integral in the 3D Cartesian coordinates,
$X=\sum h_{i}(\vec{x})\left(p_{i}^{A}\right)^{2}+\frac{1}{2} \sum\left|\epsilon_{i j k}\right| n_{i}(\vec{x}) p_{j}^{A} p_{k}^{A}+\sum s_{i}(\vec{x}) p_{i}^{A}+m(\vec{x})$,
where $p_{k}^{A}=p_{k}+A_{k}(\vec{x})$, with or without a magnetic field, the (ten) third order equations are the same, i.e.

$$
\begin{aligned}
& \partial_{i} h_{i}=\vec{\nabla} \cdot \vec{n}=0, \quad i=1,2,3 \\
& \partial_{i} h_{j}+\partial_{j} n_{k}=0, \quad i \neq j \neq k \neq i, \quad i, j, k=1,2,3 .
\end{aligned}
$$

Hence, the leading order terms are given by

$$
\sum_{1 \leq i \leq j \leq 3} a_{i j} p_{i}^{A} p_{j}^{A}+\sum_{1 \leq i \leq j \leq 3} b_{i j} L_{i}^{A} L_{j}^{A}+\sum_{i, j} c_{i j} p_{i}^{A} L_{j}^{A}
$$

where $L_{i}^{A}=\epsilon_{i j k} x_{j} p_{k}^{A}$.

Systems of coordinates allowing separation of variables of the Hamilton-Jacobi equation and the leading order terms of the second order integrals of motion.

	Coordinate systems	X_{1}	X_{2}
1	Cartesian	$\left(p_{x}\right)^{2}$	$\left(p_{y}\right)^{2}$
2	Cylindrical	$\left(L_{z}\right)^{2}$	$\left(p_{z}\right)^{2}$
3	Elliptic cylindrical	$\left(p_{z}\right)^{2}$	$\left(L_{z}\right)^{2}+a\left(p_{x}\right)^{2}$
4	Parabolic cylindrical	$\left(p_{z}\right)^{2}$	$p_{y} L_{z}$
5	Spherical	$\left(L_{z}\right)^{2}$	L^{2}
6	Prolate spheroidal	$\left(L_{z}\right)^{2}$	$L^{2}-a^{2}\left(p_{x}\right)^{2}-a^{2}\left(p_{y}\right)^{2}$
7	Oblate spheroidal	$\left(L_{z}\right)^{2}$	$L^{2}+a^{2}\left(p_{x}\right)^{2}+a^{2}\left(p_{y}\right)^{2}$
8	Circular parabolic	$\left(L_{z}\right)^{2}$	$p_{y} L_{x}-p_{x} L_{y}$
9	Conical	L^{2}	$b^{2}\left(L_{x}\right)^{2}+c^{2}\left(L_{y}\right)^{2}$
10	Ellipsoidal	\ldots	\ldots
11	Paraboloidal	\ldots	\ldots

$$
L^{2}=\left(L_{x}\right)^{2}+\left(L_{y}\right)^{2}+\left(L_{z}\right)^{2}
$$

Electromagnetic field

For a 3D Hamiltonian with an electromagnetic field, one must consider the scalar potential $W(\vec{x})$ and the vector potential $A(\vec{x})$ that can be written as a 1 -form, i.e.

$$
A=A_{x}(\vec{x}) d x+A_{y}(\vec{x}) d y+A_{z}(\vec{x}) d z
$$

and it is linked to the magnetic field

$$
B=B_{x}(\vec{x}) d y \wedge d z+B_{y}(\vec{x}) d z \wedge d x+B_{z}(\vec{x}) d z \wedge d y
$$

by the relations

$$
B_{i}=\epsilon_{i j k} \partial_{j} A_{k},
$$

where B is invariant under the transformation $\tilde{A}=A+\nabla \chi$.

Determining equations of $\{H, X\}=0$

Second order determining equations:

$$
\begin{gathered}
\partial_{x} s_{1}=n_{2} B_{2}-n_{3} B_{3}, \quad \partial_{y} s_{2}=n_{3} B_{3}-n_{1} B_{1}, \quad \partial_{z} s_{3}=n_{1} B_{1}-n_{2} B_{2}, \\
\partial_{y} s_{1}+\partial_{x} s_{2}=n_{1} B_{2}-n_{2} B_{1}+2\left(h_{1}-h_{2}\right) B_{3}, \\
\partial_{z} s_{1}+\partial_{x} s_{3}=n_{3} B_{1}-n_{1} B_{3}+2\left(h_{3}-h_{1}\right) B_{2}, \\
\partial_{y} s_{3}+\partial_{z} s_{2}=n_{2} B_{3}-n_{3} B_{2}+2\left(h_{2}-h_{3}\right) B_{1} .
\end{gathered}
$$

First order determining equations:

$$
\begin{aligned}
& \partial_{x} m=2 h_{1} \partial_{x} W+n_{3} \partial_{y} W+n_{2} \partial_{z} W+s_{3} B_{2}-s_{2} B_{3}, \\
& \partial_{y} m=n_{3} \partial_{x} W+2 h_{2} \partial_{y} W+n_{1} \partial_{z} W+s_{1} B_{3}-s_{3} B_{1}, \\
& \partial_{z} m=n_{2} \partial_{x} W+n_{1} \partial_{y} W+2 h_{3} \partial_{z} W+s_{2} B_{1}-s_{1} B_{2} .
\end{aligned}
$$

Zeroth order determining equation:

$$
\begin{array}{r}
\vec{s} \cdot \nabla W+\frac{\hbar^{2}}{4}\left(\partial_{z} n_{1} \partial_{z} B_{1}-\partial_{y} n_{1} \partial_{y} B_{1}+\partial_{x} n_{2} \partial_{x} B_{2}-\partial_{z} n_{2} \partial_{z} B_{2}\right. \\
\left.+\partial_{y} n_{3} \partial_{y} B_{3}-\partial_{x} n_{3} \partial_{x} B_{3}+\partial_{x} n_{1} \partial_{y} B_{2}-\partial_{y} n_{2} \partial_{x} B_{1}\right)=0 .
\end{array}
$$

Integrability for the circular parabolic case

$$
X_{1}=L_{x}^{A} p_{y}^{A}-L_{y}^{A} p_{x}^{A}+\ldots \quad X_{2}=\left(L_{z}^{A}\right)^{2}+\ldots
$$

(Laplace-Runge-Lenz component)

The circular parabolic coordinates

The circular parabolic coordinates are related to the 3D
Cartesian coordinates by the transformation

$$
\begin{aligned}
& x=\xi \eta \cos \phi, \\
& y=\xi \eta \sin \phi, \\
& z=\frac{1}{2}\left(\xi^{2}-\eta^{2}\right),
\end{aligned}
$$

metric:

$$
\begin{aligned}
& g_{11}=\xi^{2}+\eta^{2}, \\
& g_{22}=\xi^{2}+\eta^{2}, \\
& g_{33}=\xi^{2} \eta^{2}, \\
& g_{i j}=0, \quad i \neq j
\end{aligned}
$$

The associated Hamiltonian and the integrals of motions

In the circular parabolic coordinates, the Hamiltonian is

$$
H=\frac{1}{2}\left(\frac{\left(p_{\xi}^{A}\right)^{2}}{\xi^{2}+\eta^{2}}+\frac{\left(p_{\eta}^{A}\right)^{2}}{\xi^{2}+\eta^{2}}+\frac{\left(p_{\phi}^{A}\right)^{2}}{\xi^{2} \eta^{2}}\right)+W(\xi, \eta, \phi)
$$

and the integrals of motion are
$X_{1}=\frac{\eta^{2}}{2\left(\xi^{2}+\eta^{2}\right)}\left(p_{\xi}^{A}\right)^{2}-\frac{\xi^{2}}{2\left(\xi^{2}+\eta^{2}\right)}\left(p_{\eta}^{A}\right)^{2}+\frac{1}{2}\left(\frac{1}{\xi^{2}}-\frac{1}{\eta^{2}}\right)\left(p_{\phi}^{A}\right)^{2}+\ldots$
$X_{2}=\left(p_{\phi}^{A}\right)^{2}+\ldots$

Solution to the 18 second order equations

The first order coefficients

$$
\begin{gathered}
s_{1}^{\xi}=\frac{c_{1} \xi}{\xi^{2}+\eta^{2}}, \quad s_{1}^{\eta}=\frac{-c_{1} \eta}{\xi^{2}+\eta^{2}}, \quad s_{1}^{\phi}=\frac{f\left(\eta^{2}\right)-g\left(\xi^{2}\right)}{\xi^{2}+\eta^{2}}, \\
s_{2}^{\xi}=s_{2}^{\eta}=0, \quad s_{2}^{\phi}=2 \frac{\xi^{2} f\left(\eta^{2}\right)+\eta^{2} g\left(\xi^{2}\right)}{\eta^{2}+\xi^{2}},
\end{gathered}
$$

and the magnetic field components

$$
\begin{gathered}
B_{\xi}=\xi^{2} \partial_{\eta}\left(\frac{g\left(\xi^{2}\right)-f\left(\eta^{2}\right)}{\eta^{2}+\xi^{2}}\right), \quad B_{\eta}=\eta^{2} \partial_{\xi}\left(\frac{g\left(\xi^{2}\right)-f\left(\eta^{2}\right)}{\eta^{2}+\xi^{2}}\right), \\
B_{\phi}=0, \quad A=-\frac{\xi^{2} f\left(\eta^{2}\right)+\eta^{2} g\left(\xi^{2}\right)}{\eta^{2}+\xi^{2}} \mathrm{~d} \phi
\end{gathered}
$$

Solution to the remaining equations

The scalar potential is

$$
W(\xi, \eta, \phi)=\frac{\eta^{2} \beta\left(\xi^{2}\right)-\xi^{2} \alpha\left(\eta^{2}\right)}{\xi^{2} \eta^{2}\left(\eta^{2}+\xi^{2}\right)}+\frac{1}{2}\left(\frac{f\left(\eta^{2}\right)-g\left(\xi^{2}\right)}{\eta^{2}+\xi^{2}}\right)^{2}
$$

and the integrals of motion are

$$
\begin{aligned}
X_{1}= & \frac{\eta^{2}\left(p_{\xi}^{A}\right)^{2}-\xi^{2}\left(p_{\eta}^{A}\right)^{2}}{2\left(\eta^{2}+\xi^{2}\right)}+\frac{1}{2}\left(\frac{1}{\xi^{2}}-\frac{1}{\eta^{2}}\right)\left(p_{\phi}^{A}\right)^{2} \\
& +\left(\frac{f\left(\eta^{2}\right)-g\left(\xi^{2}\right)}{\eta^{2}+\xi^{2}}\right) p_{\phi}^{A}+\frac{\xi^{4} \alpha\left(\eta^{2}\right)+\eta^{4} \beta\left(\xi^{2}\right)}{\eta^{2} \xi^{2}\left(\eta^{2}+\xi^{2}\right)} \\
X_{2}= & \left(p_{\phi}^{A}+\frac{\xi^{2} f\left(\eta^{2}\right)+\eta^{2} g\left(\xi^{2}\right)}{\eta^{2}+\xi^{2}}\right)^{2}
\end{aligned}
$$

The magnetic field remains unchanged.

Integrability for the prolate spheroidal case

$$
X_{1}=\left(L^{A}\right)^{2}-a^{2}\left(p_{x}^{A}\right)^{2}-a^{2}\left(p_{y}^{A}\right)^{2}+\ldots \quad X_{2}=\left(L_{z}^{A}\right)^{2}+\ldots
$$

The prolate spheroidal coordinates

The prolate spheroidal coordinates are related to the 3D
Cartesian coordinates by the transformation
$x=\operatorname{asinh}(\xi) \sin (\eta) \cos (\phi)$,
$y=\operatorname{asinh}(\xi) \sin (\eta) \sin (\phi)$,
$z=\operatorname{acosh}(\xi) \cos (\eta)$,
metric:

$$
\begin{aligned}
& g_{11}=a^{2}\left(\sinh ^{2}(\xi)+\sin ^{2}(\eta)\right) \\
& g_{22}=a^{2}\left(\sinh ^{2}(\xi)+\sin ^{2}(\eta)\right) \\
& g_{33}=a^{2} \sinh ^{2}(\xi) \sin ^{2}(\eta), \\
& g_{i j}=0, \quad i \neq j
\end{aligned}
$$

Associated integrable physical system

The scalar potential is

$$
W=\frac{\alpha(\eta)+\beta(\xi)}{2 a^{2}\left(\sinh ^{2}(\xi)+\sin ^{2}(\eta)\right)}+\frac{1}{8}\left(\frac{f(\eta)-g(\xi)}{a\left(\sinh ^{2}(\xi)+\sin ^{2}(\eta)\right)}\right)^{2} .
$$

The potential vector can be chosen as

$$
A_{\xi}=A_{\eta}=0, \quad A_{\phi}=-\frac{\sin ^{2}(\eta) g(\xi)+\sinh ^{2}(\xi) f(\eta)}{2\left(\sinh ^{2}(\xi)+\sin ^{2}(\eta)\right)},
$$

such that the magnetic field is

$$
B_{\xi}=\partial_{\eta} A_{\phi}, \quad B_{\eta}=-\partial_{\xi} A_{\phi}, \quad B_{\phi}=0 .
$$

Associated integrals of motion

$$
\begin{aligned}
X_{1}= & \frac{\sinh ^{2}(\xi)\left(p_{\eta}^{A}\right)^{2}-\sin ^{2}(\eta)\left(p_{\xi}^{A}\right)^{2}}{\sinh ^{2}(\xi)+\sin ^{2}(\eta)}+\frac{\sinh ^{2}(\xi)-\sin ^{2}(\eta)}{\sinh ^{2}(\xi) \sin ^{2}(\eta)}\left(p_{\phi}^{A}\right)^{2} \\
& +\left(\frac{g(\xi)-f(\eta)}{\sinh ^{2}(\xi)+\sin ^{2}(\eta)}\right) p_{\phi}^{A}+\frac{\sinh ^{2}(\xi) \alpha(\eta)-\sin ^{2}(\eta) \beta(\xi)}{\sinh ^{2}(\xi)+\sin ^{2}(\eta)}, \\
X_{2}= & \left(p_{\phi}^{A}+\frac{\sinh ^{2}(\xi) f(\eta)+\sin ^{2}(\eta) g(\xi)}{2\left(\sinh ^{2}(\xi)+\sin ^{2}(\eta)\right)}\right)^{2} .
\end{aligned}
$$

Integrability for the oblate spheroidal case

$$
X_{1}=\left(L^{A}\right)^{2}+a^{2}\left(p_{x}^{A}\right)^{2}+a^{2}\left(p_{y}^{A}\right)^{2}+\ldots \quad X_{2}=\left(L_{z}^{A}\right)^{2}+\ldots
$$

The oblate spheroidal coordinates

The oblate spheroidal coordinates are related to the 3D Cartesian coordinates by the transformation

$$
\begin{aligned}
& x=\operatorname{acosh}(\xi) \sin (\eta) \cos (\phi) \\
& y=\operatorname{acosh}(\xi) \sin (\eta) \sin (\phi) \\
& z=a \sinh (\xi) \cos (\eta)
\end{aligned}
$$

metric:

$$
\begin{aligned}
& g_{11}=a^{2}\left(\cosh ^{2}(\xi)-\sin ^{2}(\eta)\right), \\
& g_{22}=a^{2}\left(\cosh ^{2}(\xi)-\sin ^{2}(\eta)\right), \\
& g_{33}=a^{2} \cosh ^{2}(\xi) \sin ^{2}(\eta), \\
& g_{i j}=0, \quad i \neq j .
\end{aligned}
$$

Associated integrable physical system

The scalar potential is

$$
W=\frac{\alpha(\eta)+\beta(\xi)}{2 a^{2}\left(\cosh ^{2}(\xi)-\sin ^{2}(\eta)\right)}-\frac{1}{8}\left(\frac{f(\eta)-g(\xi)}{a\left(\cosh ^{2}(\xi)-\sin ^{2}(\eta)\right)}\right)^{2}
$$

The potential vector can be chosen as

$$
A_{\xi}=A_{\eta}=0, \quad A_{\phi}=\frac{\sin ^{2}(\eta) g(\xi)-\cosh ^{2}(\xi) f(\eta)}{2\left(\cosh ^{2}(\xi)-\sin ^{2}(\eta)\right)}
$$

such that the magnetic field is

$$
B_{\xi}=\partial_{\eta} \boldsymbol{A}_{\phi}, \quad B_{\eta}=-\partial_{\xi} \boldsymbol{A}_{\phi}, \quad B_{\phi}=0 .
$$

Associated integrals of motion

$$
\begin{aligned}
X_{1}= & \frac{\sin ^{2}(\eta)\left(p_{\xi}^{A}\right)^{2}+\cosh ^{2}(\xi)\left(p_{\eta}^{A}\right)^{2}}{\cosh ^{2}(\xi)-\sin ^{2}(\eta)}+\frac{\cosh ^{2}(\xi)+\sin ^{2}(\eta)}{\cosh ^{2}(\xi) \sin ^{2}(\eta)}\left(p_{\phi}^{A}\right)^{2} \\
& +\left(\frac{f(\eta)-g(\xi)}{\cosh ^{2}(\xi)-\sin ^{2}(\eta)}\right) p_{\phi}^{A}+\frac{\cosh ^{2}(\xi) \alpha(\eta)+\sin ^{2}(\eta) \beta(\xi)}{\cosh ^{2}(\xi)-\sin ^{2}(\eta)}, \\
X_{2}= & \left(p_{\phi}^{A}+\frac{\cosh ^{2}(\xi) f(\eta)-\sin ^{2}(\eta) g(\xi)}{2\left(\cosh ^{2}(\xi)-\sin ^{2}(\eta)\right)}\right)^{2} .
\end{aligned}
$$

Superintegrability:

Linear integrals

Additional first order integrals of motion

A general first order integral of motion takes the form

$$
Y=k_{1} p_{x}^{A}+k_{2} p_{y}^{A}+k_{3} p_{z}^{A}+k_{4} L_{x}^{A}+k_{5} L_{y}^{A}+k_{6} L_{z}^{A}+m_{3}(x, y, z)
$$

and such that

$$
\{H, Y\}=0 .
$$

The integral Y does not need to be in involution with the other integrals of motion.

For the circular parabolic case, we distinguish the three following systems that are superintegrable with at least one additional linear integral of motion for which the magnetic field does not vanish completely.

Case 1: $p_{z}^{A}+m_{3}(x, y, z)$

$$
\begin{aligned}
H & =\frac{1}{2}\left(\left(p_{x}^{A}\right)^{2}+\left(p_{y}^{A}\right)^{2}+\left(p_{z}^{A}\right)^{2}\right)+\frac{\omega}{x^{2}+y^{2}}-\frac{1}{8} b_{z}^{2}\left(x^{2}+y^{2}\right), \\
B & =b_{z} \mathrm{~d} x \wedge \mathrm{~d} y, \\
X_{1} & =L_{x}^{A} p_{y}^{A}-L_{y}^{A} p_{x}^{A}+b_{z} z L_{z}^{A}-\frac{1}{4} b_{z}^{2} z\left(x^{2}+y^{2}\right)-\frac{2 \omega z}{x^{2}+y^{2}}, \\
\tilde{X}_{2} & =L_{z}^{A}-\frac{1}{2} b_{z}\left(x^{2}+y^{2}\right), \\
Y_{3} & =p_{z}^{A} .
\end{aligned}
$$

There is free motion along the z-axis.
The magnetic field is constant and oriented along the z-axis. This system belongs to all previously studied cases.

Case 2: $p_{x}^{A}+m_{3}(x, y, z)$ and $p_{y}^{A}+m_{4}(x, y, z)$

$$
\begin{aligned}
H & =\frac{1}{2}\left(\left(p_{x}^{A}\right)^{2}+\left(p_{y}^{A}\right)^{2}+\left(p_{z}^{A}\right)^{2}\right)+\frac{b_{z}^{2} z^{2}}{2}, \\
B & =b_{z} \mathrm{~d} x \wedge \mathrm{~d} y, \\
X_{1} & =L_{x}^{A} p_{y}^{A}-L_{y}^{A} p_{x}^{A}+b_{z} z L_{z}^{A}, \\
\tilde{X}_{2} & =L_{z}^{A}-\frac{1}{2} b_{z}\left(x^{2}+y^{2}\right), \\
Y_{3} & =p_{x}^{A}+b_{z} y, \\
Y_{4} & =p_{y}^{A}-b_{z} x .
\end{aligned}
$$

The magnetic field is constant and oriented along the z-axis. This Hamiltonian is linked to the center of mass of the two-electron quantum dots for special values of its magnetic field and its confinement frequencies.

Case 3: $L_{x}^{A}+m_{3}(x, y, z)$ and $L_{y}^{A}+m_{4}(x, y, z)$

$$
\begin{aligned}
H & =\frac{1}{2}\left(\left(p_{x}^{A}\right)^{2}+\left(p_{y}^{A}\right)^{2}+\left(p_{z}^{A}\right)^{2}\right)+\frac{b_{m}^{2}}{2 R^{2}}+\frac{\omega}{2 R}, \\
B & =\frac{b_{m}}{R^{3}}(x \mathrm{~d} y \wedge \mathrm{~d} z+y \mathrm{~d} z \wedge \mathrm{~d} x+z \mathrm{~d} x \wedge \mathrm{~d} y), \\
X_{1} & =L_{x}^{A} p_{y}^{A}-L_{y}^{A} p_{x}^{A}-\frac{b_{m} L_{z}^{A}}{R}-\frac{\omega z}{2 R}, \\
\tilde{X}_{2} & =L_{z}^{A}+\frac{b_{m} z}{R}, \\
Y_{3} & =L_{x}^{A}+\frac{b_{m} x}{R}, \quad R=\sqrt{x^{2}+y^{2}+z^{2}}, \\
Y_{4} & =L_{y}^{A}+\frac{b_{m} y}{R} .
\end{aligned}
$$

This system is characterized by the magnetic field of a magnetic monopole together with the (3D) Coulomb potential.

Superintegrability:

The special case:

$$
Y=\left(L^{A}\right)^{2}+\ldots
$$

Magnetic field

The associated magnetic field is composed of the superposition of three types of magnetic fields, i.e.

$$
B=B_{z}+B_{m}+B_{n} .
$$

Constant magnetic field:

$$
B_{z}=b_{z} \mathrm{~d} x \wedge \mathrm{~d} y
$$

Magnetic monopole:

$$
B_{m}=\frac{b_{m}}{R^{3}}(x \mathrm{~d} y \wedge \mathrm{~d} z+y \mathrm{~d} z \wedge \mathrm{~d} x+z \mathrm{~d} x \wedge \mathrm{~d} y)
$$

and a magnetic field of the form:

$$
B_{n}=\frac{b_{n}}{R^{3}}\left(x z \mathrm{~d} y \wedge \mathrm{~d} z+y z \mathrm{~d} z \wedge \mathrm{~d} x+\left(R^{2}+z^{2}\right) \mathrm{d} x \wedge \mathrm{~d} y\right)
$$

"New" magnetic field

$$
\left(\frac{x z}{R^{3}}, \frac{y z}{R^{3}}, \frac{R^{2}+z^{2}}{R^{3}}\right), \quad|B| \leq \frac{2\left|b_{n}\right|}{R}
$$

(Minimally) superintegrable Hamiltonian

$$
\begin{aligned}
H= & \frac{\left(p_{x}^{A}\right)^{2}+\left(p_{y}^{A}\right)^{2}+\left(p_{z}^{A}\right)^{2}}{2}+\frac{u_{1}}{x^{2}+y^{2}}+\frac{u_{2}}{R}+\frac{u_{3} z}{\left(x^{2}+y^{2}\right) R} \\
& +\frac{b_{m}^{2}}{2 R^{2}}+\frac{b_{z} b_{m} z}{2 R}-\frac{b_{z} b_{n}\left(x^{2}+y^{2}\right)}{2 R} \\
& +\frac{b_{m} b_{n} z}{R^{2}}-\frac{b_{n}^{2}\left(x^{2}+y^{2}\right)}{2 R^{2}}-\frac{1}{8} b_{z}^{2}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

Integrals of motion

$$
\begin{aligned}
X_{1}= & p_{y}^{A} L_{x}^{A}-p_{x}^{A} L_{y}^{A}+\left(\frac{b_{m}}{R}+\frac{b_{n} z}{R}+b_{z} z\right) L_{z}^{A} \\
& -\frac{b_{m} b_{z}\left(x^{2}+y^{2}\right)}{2 R}-\frac{b_{n} b_{z} z\left(x^{2}+y^{2}\right)}{2 R}-\frac{b_{z}^{2} z}{4}\left(x^{2}+y^{2}\right) \\
& -\frac{2 u_{1} z}{x^{2}+y^{2}}-\frac{u_{2} z}{R}-\frac{u_{3}\left(R^{2}+z^{2}\right)}{\left(x^{2}+y^{2}\right) R}, \\
\tilde{X}_{2}= & L_{z}^{A}+\frac{b_{m} z}{R}-\frac{b_{n}\left(x^{2}+y^{2}\right)}{R}-\frac{b_{z}}{2}\left(x^{2}+y^{2}\right), \\
Y_{3}= & \left(L^{A}\right)^{2}-\left(2 b_{n} R+b_{z} R^{2}\right) L_{z}^{A}+\frac{2 u_{1} z^{2}}{x^{2}+y^{2}}+\frac{2 u_{3} z R}{x^{2}+y^{2}} \\
& +b_{n} b_{z}\left(x^{2}+y^{2}\right) R+b_{n}^{2}\left(x^{2}+y^{2}\right)+\frac{1}{4} b_{z}^{2}\left(x^{2}+y^{2}\right) R^{2} .
\end{aligned}
$$

The algebra of the integrals of motion closes polynomially and there exists no additional first or second order integral.

Conclusions

- We have investigated integrability for the three cases: Circular parabolic, Prolate and Oblate spheroidal.
- In all three cases, the quadratic integral $L_{z}^{2}+\ldots$ degenerates to a first order integral of motion and the magnetic field is not constrained by the lower order determining equations
- For the circular parabolic case, all additional first order integrals of motion have been found. All these systems already appeared in the literature.
- A particular additional second order integral of motion $\left(L^{2}+\ldots\right)$ leads to an interesting new superintegrable system.
- Among these results, no purely quantum system exists.

Future perspectives

It would be interesting to:

- establish or disprove the equivalence of integrability and the separability of the Hamilton-Jacobi and the Schrödinger equations admitting magnetic forces.
- study the remaining integrable cases of non-subgroup type. (Work in progress.)
- investigate the superintegrability of the prolate and oblate spheroidal cases.
- develop more efficient techniques to deal with higher order integrals for superintegrability.
- extend such results to a relativistic approach for additional physical applications.

Thank you

ArXiV: 1812.09399

S Bertrand and L Šnobl (2019)
J. Phys. A: Math. Theor. 52195201 (25pp).

DOI: 10.1088/1751-8121/ab14c2

