
Variational Principles for Supinf problems with

constraints

D. Kamburova

2019

D. Kamburova Variational Principles for Supinf problems with constraints



Settings

(P) sup
x∈X

inf
y∈Kx

f (x , y),

f : X × Y → [−∞,∞]
X ,Y - completely regular topological spaces
K : X ⇒ Y - a set-valued mapping with non-empty images

A solution to the problem (Ð ) is every couple (x0, y0) ∈ X × Y ,
such that:

f (x0, y0) = inf
y∈Kx0

f (x0, y) = sup
x∈X

inf
y∈Kx

f (x , y).
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Settings

Find the conditions under which after a perturabation of the
function f by a continuous and bounded function:
1. the problem (P) has a solution;
2. the problem (P) is Tykhonov well-posed?
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Existing results for functions of one variable

Ekeland's variational principle

Ekeland I. (1974) On the variational principle, J. Math. Anal. Appl.,
47, 324â��353.

Stegall's variational principle

Stegall, C., Optimization of functions on certain subsets of Banach
spaces, (1978) Math. Ann., 236, 171�176.

Borwein-Preiss and Deville-Godefroy-Zizler smooth variational
principles

Borwein, J.M., D. Preiss, (1987) A smooth variational principle
with applications to subdi�erentiability and di�erentiability of
convex functions, Trans. Amer. Math. Soc. 303, 517�527.
Deville, R., G. Godefroy, V. Zizler, (1993) A smooth variational
principle with applications to Hamilton�Jacobi equations in in�nite
dimensions, J. Funct. Anal., 111, 197�212.
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Existing results for functions of one variable

Coban-Kenderov-Revalski smooth variational principles

�Coban, M.M., P.S. Kenderov, J.P. Revalski, (1989) Generic
well-posedness of optimization problems in topological spaces,
Mathematika, 36, 301�324.
Kenderov. P. and J.P. Revalski, Dense existence of solutions of
perturbed optimization problems and topological games, (2010)
Compt. Rend. Acad. Bulg. Sci, 63, 937�942.
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Existing results for functions of two variables

McLinden

McLinden,L., An application of Ekeland's theorem to minmax
problems, (1982) Nonlinear Analysis, Theory, Methods &

Applications, Vol. 6, No. 2., 189�196.

Kenderov, Revalski

Kenderov P. and J. P. Revalski, Variational principles for supinf
problems, (2017) Compt. rend. Acad. bul Sci, 70(12).
Kx = Y , ∀x ∈ X
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Tykhonov well-posedness

De�nition (Tykhonov well-posed problem)

The problem to minimize h : Z → R ∪ {+∞}, Z - a topological
space, is called Tykhoniv well-posed if there is a unique solution
z0 ∈ Z and every minimizing sequence zn → z0.

The problem to maximize h : Z → R ∪ {−∞} is called Tykhoniv
well-posed if −h the problem to minimize −h : Z → R ∪ {+∞} is
Tykhonov well-posed.

De�nition (Sup-well-posed)

The problem (P) is called sup-well-posed if the problem to
maximize the function v(·) := infy∈K(·) f (·, y) is well-posed in the
sense of Tykhonov (i.e. every maximizing sequence (xn)n
(v(xn)→ supx∈X v(x)) converges to the unique maximizer of v .
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Tykhonov well-posedness

De�nition (an optimizing sequence for the problem (P))

The sequence (xn, yn) ∈ X × Y is called optimizing for (P) if:

1 yn ∈ Kxn for every n;

2 v(xn)→ vf := supx∈X infy∈Kx f (x , y);

3 f (xn, yn)→ vf .

(P) is well-posed if every optimizing sequence for (P) converges to
the unique solution (x0, y0) of (P).
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Applications

Leader-follower games

vf = supx∈X infy∈Kx f (x , y) - expresses the guaranteed utility for
the �rst player.

Stackelberg problem

for every x ∈ X :

Kx := {y ′ : g(x , y ′) = inf
y∈Y

g(x , y)},

g : X × Y → R - a given function;

D. Kamburova Variational Principles for Supinf problems with constraints



Preliminary results

Lemma 1

Let h : Z → R ∪ {+∞} be a proper, lower semicontinuous and
bounded from below function. Let z0 ∈ dom(h) and ε > 0 be such
that h(z0) < infZ h + ε. Then, there exists a continuous and
bounded function g : Z → R+, g(z0) = 0, ||g ||Z ,∞ ≤ ε and the
function h + g attains its minimum in Z at z0. Moreover, g can be
chosen such that ||g ||Z ,∞ = h(z0)− infZ h.

Kenderov P. and J. P. Revalski, 2010

D. Kamburova Variational Principles for Supinf problems with constraints



Preliminary results

Lemma 2

Let h : Z → R ∪ {+∞} be a proper, lower semicontinuous and
bounded from below function. A is a closed subset of Z and
A ∩ dom(h) 6= ∅. Let z0 ∈ A ∩ dom(h) and ε > 0 be such that
h(z0) < infA h + ε. Then, there exists a continuous and bounded
function g : Z → R+, g(z0) = 0, ||g ||Z ,∞ ≤ ε and the function
h + g attains its minimum in A at z0. Moreover, g can be chosen
such that ||g ||Z ,∞ = h(z0)− infA h.

Lemma 3

Let f : X × Y → [−∞,+∞] be an upper semicontinuous function.
K : X ⇒ Y is a lower semicontinuous set-valued mapping with
non-empty images, then v(·) = inf{f (·, y), y ∈ K (·)} is upper
semicontinuous in X .

D. Kamburova Variational Principles for Supinf problems with constraints



Variational principles of supinf problems with constraints

Assumptions

1 f is upper semicontinuous in (x , y) ∈ X × Y ;

2 K : X ⇒ Y is a lower semicontinuous set-valued mapping with
non-empty closed images;

3 the function v(·) := infy∈K · f (·, y) is bounded from above in
X and proper as a function with values in R ∪ {−∞};

4 for every x ∈ X the function f (x , ·) is lower semicontinuous in
Y .
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Variational principles for supinf problems with constraints

Theorem 1

Let f : X ×Y → [−∞,+∞] be a real-valued function, that satis�es
(1), (2), (3) and (4) together with the set-valed mapping K . Let
ε > 0 and x0 ∈ X be such that v(x0) > supx∈X v(x)− ε and let
δ > 0 and y0 ∈ Kx0 be such that f (x0, y0) < infy∈Kx0 f (x0, y) + δ.
Then, there exist continuous bounded functions q : X → R+ and
p : Y → R+, such that q(x0) = p(y0) = 0, ||q||X ,∞ ≤ ε,
||p||Y ,∞ ≤ δ and the supinf problem
supx∈X infy∈Kx{f (x , y)− q(x) + p(y)} has a solution at (x0, y0).
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Proof of Theorem 1

Apply Lemma 1 for −v(·), point x0 and ε ⇒ ∃ q ∈ C (X ) :
q(x0) = 0, ||q||X ,∞ ≤ ε and v(·)− q(·) attains its maximum in X
at x0.

Apply Lemma 2 for f (x0, ·), point y0 and δ ⇒ ∃ p ∈ C (Y ) :
p(y0) = 0, ||p||Y ,∞ ≤ δ and f (x0, ·) + p(·) attains its minimum on
Kx0 at y0 and ||p||Y ,∞ = f (x0, y0)− infy∈Kx0 f (x0, y) := c ≥ 0.
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Proof of Theorem 1

Take an arbitrary x :

infy∈Kx{f (x , y)− q(x) + p(y)} − c =
infy∈Kx{f (x , y) + p(y)− c} − q(x)
≤ infy∈Kx f (x , y)− q(x) = v(x)− q(x)
≤ v(x0)− q(x0) = v(x0).

infy∈Kx{f (x , y)− q(x) + p(y)} ≤ v(x0) + c =
infy∈Kx0 f (x0, y) + c = f (x0, y0)
= f (x0, y0) + p(y0) = infy∈Kx0{f (x0, y) + p(y)}
= infy∈Kx0{f (x0, y)− q(x0) + p(y)}.
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Variational principles for supinf problems with constraints

Theorem 2

Let f : X × Y → [−∞,+∞] be a real-valued function which
satis�es (1), (2), (3) and (4) together with the set-valed mapping
K , then:

1 The set {(q, p) ∈ C (X )× C (Y ) : the supinf problem has a
solution for the function f (x , y) + q(x) + p(y), (x , y) ∈ X ×Y
} is a dense subset of C (X )× C (Y );

2 The set {u ∈ C (X ×Y ) : the supinf problem has a solution for
the function f (x , y) + u(x , y), (x , y) ∈ X × Y } is a dense
subset of C (X × Y ), || · ||X×Y ,∞;
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Sup-well posedness

Proposition 1

Let the assumptions on f : X × Y → [−∞,+∞], K : X ⇒ Y , x0
Ð¼ y0 from Theorem 1 hold and x0 has a countable local base in X .
Then, there exist continuous and bounded functions q : X → R+

and p : Y → R+, such that q(x0) = p(y0) = 0, ||q||X ,∞ ≤ ε,
||p||Y ,∞ ≤ δ and the supinf problem
supx∈X infy∈Kx{f (x , y)− q(x) + p(y)} has a solution at (x0, y0)
and the problem is sup-well-posed with unique sup-solution x0.

If Kx = Y for every x ∈ X the above three results were proved by
Kenderov and Revalski, (2017).
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Well-posedness

Sf : C (X )× C (Y ) ⇒ X × Y - a set-valued mapping which assigns
to every functions q ∈ C (X ) and p ∈ C (Y ) the solution set
(possibly empty) of the problem
supx∈X infy∈Kx{f (x , y) + q(x) + p(y)}.

Theorem 3

Let the assumptions 1)-4) for f : X × Y → [−∞,+∞] and
K : X ⇒ Y hold. Then, the mapping Sf is single-valued and upper
semicontinuous at (q, p) ∈ C (X )× C (Y ), if and only if the supinf
problem supx∈X infy∈Kx{f (x , y) + q(x) + p(y)} is well-posed.
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Proof of Theorem 3, ⇒

Sf is single-valued and upper semicontinuous at
(q, p) ∈ C (X )× C (Y ), (x0, y0) = Sf (q, p).
(xn, yn)n - an optimizing sequence for the supinf problem
supx∈X infy∈Kx{f (x , y) + q(x) + p(y)}:

1 yn ∈ Kxn for every n;

2 v(xn) = infy∈Kxn{f (xn, y) + q(xn) + p(y)} → vf =
supx∈X infy∈Kx{f (x , y) + q(x) + p(y))};

3 f (xn, yn)→ vf .

Suppose (xn, yn)n 9 (x0, y0)⇒ ∃ open neighbouhoods U 3 x0,
V 3 y0 and a subsequence (xn, yn) /∈ U × V , ∀n.
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Proof of Theorem 3, ⇒

Sf - an upper semicontinuous set-valued mapping ⇒ ∃ε > 0: from
||q′ − q||X ,∞ < ε, ||p′ − p||Y ,∞ < ε, q′ ∈ C (X ), p′ ∈ C (Y ), it
follows Sf (q

′, p′) ⊂ U × V .

Let n be so large that:
vf − v(xn) < ε/2 and |vf − f (xn, yn)− q(xn)− p(yn)| < ε/2

⇒
f (xn, yn) + q(xn) + p(yn) < v(xn) + ε =
infy∈Kxn{f (xn, y) + q(xn) + p(y)}+ ε.
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Proof of Theorem 3, ⇒

Apply Theorem 1 for the function
f (x , y) + q(x) + p(y), (x , y) ∈ X × Y , the point xn, ε/2, yn ∈ Kxn
and ε:
∃ qn ∈ C (X ), pn ∈ C (Y ): ||qn||X ,∞ ≤ ε/2, ||pn||Y ,∞ ≤ ε and the
problem supx∈X infy∈Kx{f (x , y) + q(x)− qn(x) + p(y) + pn(y)}
has a solution at (xn, yn).
||q − qn − q||X ,∞ ≤ ε/2, ||p + pn − p||Y ,∞ ≤ ε and
(xn, yn) ∈ Sf (q − qn, p + pn) ⊂ U × V , a contradiction with the
assumption that (xn, yn) /∈ U × V .
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Proof of Theorem 3, ⇐

The supinf problem for the function f (x , y) + q(x) + p(y) and the
mapping K is well-posed with a solution at (x0, y0) ⇒
Sf (q, p) = {(x0, y0)}.

Suppose Sf is not uppersemicontinuous at (q, p) ⇒ ∃ open
neighbourhoods U 3 x0, V 3 y0: for every n, there exist qn and pn,
||qn − q||X ,∞ < 1/n, ||pn − p||Y ,∞ < 1/n, qn ∈ C (X ), pn ∈ C (Y ),
Sf (qn, pn) is not contained in U × V , i.e. for every n ∃
(xn, yn) ∈ Sf (qn, pn)\(U × V ).
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Proof of Theorem 3½ ⇐

f (xn, yn) + qn(xn) + pn(yn) = infy∈Kxn{f (xn, y) + qn(xn) + pn(y)}
= supx∈X infy∈Kx{f (x , y) + qn(x) + pn(y)}.

Denote:
αn = f (xn, yn) + qn(xn) + pn(yn),
vn(xn) = infy∈Kxn{f (xn, y) + qn(xn) + pn(y)},
vn = supx∈X infy∈Kx{f (x , y) + qn(x) + pn(y)}.

vn → vf = supx∈X infy∈Kx{f (x , y) + q(x) + p(y)};
|vn(xn)− v(xn)| < ε, for n large enough;
|αn − f (xn, yn)− q(xn)− p(yn)| < ε, for n large enough;

(xn, yn) - an optimizing sequence for the problem
supx∈X infy∈Kx{f (x , y) + q(x) + p(y)}, a contradiction with the
well-posedness of the problem.
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Well-posedness

Theorem 4

Let the assumptions 1)-4) for f : X × Y → [−∞,+∞] and
K : X ⇒ Y hold. Then, the mapping
S̃f : (C (X × Y ), || · ||∞) :⇒ X × Y which assigns to every
u ∈ C (X × Y ) the solution set of the problem
supx∈X infy∈Kx{f (x , y) + u(x , y)} is single-valued and upper
semicontinuous at (u ∈ C (X ×Y ), if and only if the supinf problem
supx∈X infy∈Kx{f (x , y) + u(x , y)} is well-posed.
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Than you for your attention!
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