Lecture 2: The tangency principle

PDEs: a graph $z=u(x, y),(x, y) \in D \subset \mathbb{R}^{2}$, satisfies

$$
\begin{gathered}
\left(1+u_{y}^{2}\right) u_{x x}-2 u_{x} u_{y} u_{x y}+\left(1+u_{x}^{2}\right) u_{y y}=2 H\left(1+u_{x}^{2}+u_{y}^{2}\right)^{3 / 2} . \\
\operatorname{div} \frac{\left(u_{x}, u_{y}\right)}{\sqrt{1+u_{x}^{2}+u_{y}^{2}}}=\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=2 H .
\end{gathered}
$$

On the boundary

$$
u=\varphi, \quad \text { along } \partial D
$$

The difference function $u=u_{1}-u_{2}$ satisfies a linear elliptic PDE:

$$
L u=0 .
$$

Theorem (touching-tangency-maximum principle)

$$
\begin{aligned}
& \mathrm{H}_{1}=\mathrm{H}_{2}=\mathrm{c} \\
& >\mathrm{S}
\end{aligned}
$$

$$
\text { then } \quad S_{2}=S_{1}
$$

Proposition (comparison principle)

If $S_{2} \geq S_{1}$ around p, then $H_{2}(p) \geq H_{1}(p)$.

$$
\left(1+f_{y}^{2}\right) f_{x x}-2 f_{x} f_{y} f_{x y}+\left(1+f_{x}^{2}\right) f_{y y}=2 H\left(1+f_{x}^{2}+f_{y}^{2}\right)^{3 / 2}
$$

After change of coordinates

$$
2 H(p)=\left(\frac{\partial^{2} f}{x^{2}}+\frac{\partial^{2} f}{y^{2}}\right)(p)
$$

If $f_{2} \geq f_{1}, f_{2}-f_{1}$ has local minimum at p, so

$$
\frac{\partial f_{2}}{x^{2}}(p) \geq \frac{\partial f_{1}}{x^{2}}(p), \quad \frac{\partial f_{2}}{y^{2}}(p) \geq \frac{\partial f_{1}}{y^{2}}(p)
$$

There are not closed compact MINIMAL surfaces
Bounded minimal surfaces with boundary

M is H-surface with $\partial M \subset P=\{z=0\}$

1. If $H=0$, then M is included in P.
2. For general boundary curve, $H=0$, then M is included in the convex hull of ∂M.
3. M is a graph, $H>0$ for $N_{3}>0$. Then $M \subset P^{-}$.

Theorem (Alexandrov)

Embedded closed CMC surface \Rightarrow round sphere.

Conjecture 2. Planar discs and spherical caps are the only compact CMC surfaces with circular boundary that are embedded

Theorem (Alexandrov)

Embedded CMC surface with $\partial M=\mathbb{S}^{1}$

$$
M \subset P^{+} \quad \Rightarrow \text { spherical cap. }
$$

Problem. What type of hypothesis ensure that S is over the plane?

Theorem
S CMC embedded surface, $\partial S=C_{1} \cup C_{2}, C_{i}$ coaxial circles in parallel planes. If S lies between P_{1} and P_{2}, then S is rotational.

A liquid drop over a plane is rotational

Theorem (Dirichlet+Neumann)

Let S be an embedded $C M C$ surface with $\partial S \subset P, S \subset P^{+}$. If S makes a constant angle with P along ∂S, then S is a spherical cap.

Corollary

A liquid drop between two parallel planes is rotational.

Theorem
Let S be a CMC embedded surface spanning by C. If $S \cap \operatorname{ext}(D)=\emptyset$, then $S \subset P^{+}$.

Theorem
Let S be a $C M C$ embedded and $S \subset P^{+}$. If S is a graph around C, then S is a graph.

Theorem

Let S be a CMC embedded surface spanning a convex curve. If S is transverse to P along C then $S \subset P^{+}$.

Theorem

There do not exist BIG closed liquid drops!!!
liquid BIG drop $=$ liquid drop with weight+embedded surface.
$\rightsquigarrow 2 H(x, y, z)=\kappa z+\mu, \kappa \neq 0, \mu \in \mathbb{R}$.

$$
\begin{gathered}
\operatorname{div} \nabla\langle X, \vec{a}\rangle=\Delta\langle X, \vec{a}\rangle=2 H\langle N, \vec{a}\rangle=\kappa z\langle N, \vec{a}\rangle+\mu\langle N, \vec{a}\rangle . \\
\kappa \int_{S} z\langle N, \vec{a}\rangle+\mu \int_{S}\langle N, \vec{a}\rangle=\int_{S} \operatorname{div} \nabla\langle X, \vec{a}\rangle=\int_{\partial S=\emptyset} *=0 . \\
Y=\vec{a} \Rightarrow D I V(Y)=0 \rightsquigarrow \\
0=\int_{W} D I V(Y)=\int_{\partial W=S}\langle N, Y\rangle=\int_{S}\langle N, \vec{a}\rangle \\
Z(x, y, z)=(0,0, z) \rightsquigarrow D I V(Z)=1 . \\
\operatorname{vol}(W)=\int_{W} 1=\int_{W} \operatorname{DIV}(Z)=\int_{\partial W=S}\langle(0,0, z), N\rangle=\int_{S} z\langle N, \vec{a}\rangle .
\end{gathered}
$$

Stability

Definition

A cmc surface S is stable if

$$
A^{\prime \prime}(0) \geq 0
$$

$$
\begin{gathered}
A^{\prime \prime}(0)=\int_{S}-f\left(\Delta f+|A|^{2} f\right) d S \geq 0, \quad \forall \int_{M} f d S=0 \\
|A|^{2}=4 H^{2}-2 K, \quad|A|^{2} \geq 2 H^{2} \quad\left[\left(\lambda_{1}-\lambda_{2}\right)^{2} \geq 0\right]
\end{gathered}
$$

1. If the boundary is fix, we also assume that $f=0$ along ∂S.
2. If the boundary freely moves in a support, then there is a condition between f and the contact angle.

Theorem

Spheres are the only stable CMC closed surfaces
Proof: find a suitable test function f.

$$
\begin{gathered}
\Delta|x|^{2}=4+4 H\langle N, x\rangle \Rightarrow \int_{S} 1+H\langle N, x\rangle=0 \\
f=1+H\langle N, x\rangle \\
\Delta\langle N, x\rangle=-2 H-|A|^{2}\langle N, x\rangle \Rightarrow \Delta f=H\left(-2 H-|A|^{2} \mid\langle N, X\rangle\right) \\
0 \geq \int_{S} f\left(\Delta f+|A|^{2} f\right)=\int_{S}-2 H^{2}(1+H\langle N, x\rangle)+H|A|^{2}\langle N, x\rangle+|A|^{2} \\
=\int_{S} H|A|^{2}\langle N, x\rangle+|A|^{2} \geq \int_{S} H|A|^{2}\langle N, x\rangle+2 H^{2} \\
=H \int_{S} 2 H+|A|^{2}\langle N, x\rangle=0 \\
\Rightarrow|A|=2 H^{2} \rightsquigarrow S \text { is umbilical (plane and sphere) }
\end{gathered}
$$

Theorem
$\partial M=\mathbb{S}^{1}$, stable + disc \Rightarrow spherical cap.

