DISM
 Scienze Matematiche
 G. L. Lagrange
 +ECCELLENZA $2018 \cdot 2022$

The Helfrich model for the elasticity of biomembranes as a limit of mesoscopic energies

Luca Lussardi
luca.lussardi@polito.it
XXI Geometry, Integrability and Quantization
Varna (Bulgaria) - June 7, 2019

Outline

- Cell membranes
- Models for cell membranes
- Qualitative description of the Peletier-Röger mesoscopic model
- How to pass to the limit in a rigorous way: Г-convergence
- Main tools for the 3D-analysis

References:

- L. Lussardi, M.A. Peletier and M. Röger, Variational analysis of a mesoscale model for bilayer membranes, J. Fixed Point Theory Appl. 15 (2014), no. 1, 217-240
- L. Lussardi and M. Röger, Gamma convergence of a family of surface-director bending energies with small tilt, Arch. Rational Mech. Anal. 219 (2016), no. 3, 985-1016

The cell membrane

Luca Lussardi, Varna 2019, 3/20

The Helfrich energy functional (1973)

For a smooth surface S in the space we let

$$
E(S)=\int_{S} \kappa_{b}\left(\mathrm{H}_{S}-\mathrm{H}_{0}\right)^{2}-\kappa_{G} \mathrm{~K}_{S} d \sigma
$$

- H_{S} is the mean curvature of S and K_{S} is the Gauss curvature of S
- $\kappa_{b}>\kappa_{G}>0$ (Mathematics \& Physics)

■ H_{0} is the spontaneous curvature
The shape of the cell membrane minimizes E
We notice that if S is a closed surface and $H_{0}=0$ then E reduces (up to constants) to the Willmore energy functional

$$
W(S)=\int_{S} \mathrm{H}_{S}^{2} d \sigma
$$

A microscopic model (Peletier-Röger, ARMA 2009)

Probabilistic model:

- In $\Omega \subset \mathbb{R}^{d}$: positions of heads X_{h}^{i}, tails X_{t}^{i} and water particles X_{w}^{j}, with $i=1, \ldots, N_{\ell}$ and $j=1 \ldots, N_{w}$. Set $\mathcal{X}:=\Omega^{2 N_{\ell}+N_{w}}$ and

$$
\mathcal{X} \ni X=\left(X_{t}^{1}, \ldots, X_{t}^{N_{\ell}}, X_{h}^{1}, \ldots, X_{h}^{N_{\ell}}, X_{w}^{1}, \ldots, X_{w}^{N_{w}}\right)
$$

- Probability density ψ on \mathcal{X} :

$$
\psi: \mathcal{X} \rightarrow[0,1], \quad \int \psi=1
$$

- Volume fractions of heads/tails/water:

$$
r_{t}(\psi)(x), \quad r_{h}(\psi)(x), \quad r_{w}(\psi)(x)
$$

A microscopic model (Peletier-Röger, ARMA 2009)

Energy contributions:

- Penalize the proximity of hydrophilic and hydrophobic grains:

$$
\iint\left(r_{w}(\psi)(x)+r_{h}(\psi)(x)\right) r_{t}(\psi)(y) \rho(x-y) d x d y
$$

- Incompressibility:

$$
r_{t}(\psi)(x)+r_{h}(\psi)(x)+r_{w}(\psi)(x)=1
$$

- Interaction between head and tail:

$$
\int_{\mathcal{X}} \sum_{i=1}^{N_{\ell}}\left|X_{h}^{i}-X_{t}^{i}\right| \psi(X) d X
$$

The mesoscopic model formally derived (Peletier-Röger, ARMA 2009)
$\square\left\{x: u(x)=\varepsilon^{-1}\right\}$
$\square\left\{x: v(x)=\varepsilon^{-1}\right\}$

- Energy arising from hydrophilic/hydrophobic behavior: area of the boundary of the region occupied by u_{ε}
- Energy arising from the covalent bond between heads and tails: Monge-Kantorovich distance between u_{ε} and v_{ε}

The behavior of the energy on ring structures

$$
\text { Energy } \sim 2 M+\underbrace{\frac{M}{4}\left(\frac{r_{4}-r_{1}}{2 \varepsilon}-2\right)^{2}}_{\text {partial localization }}+\underbrace{\frac{M \varepsilon^{2}}{\left(r_{4}+r_{1}\right)^{2}}}_{\text {bending energy }}
$$

We thus study $G_{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right):=($ Energy $-2 M) / \varepsilon^{2}$

What happens as $\varepsilon \rightarrow 0$? A review on Γ-convergence

Approximate energies by means of simpler functionals with a stability property of the minimum problems during the limit process. General framework:
Γ-convergence (De Giorgi, 1975). If (X, d) is a metric space,
$F_{\varepsilon}:(X, d) \rightarrow[-\infty,+\infty], F_{\varepsilon} \stackrel{\Gamma}{\rightarrow} F$ as $\varepsilon \rightarrow 0$ if

- $\forall u \in X, \forall u_{\varepsilon} \rightarrow u:$

$$
F(u) \leq \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right)
$$

- $\forall u \in X, \exists u_{\varepsilon} \rightarrow u:$

$$
\limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right) \leq F(u)
$$

Why does 「-convergence work?

The main estimate (L-Peletier-Röger, JFPTA 2014)

$S_{\varepsilon}:=$ interface between u_{ε} and v_{ε} (smooth enough), then

$$
\begin{aligned}
G_{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right) \gtrsim & \frac{1}{\varepsilon^{2}} \int_{S_{\varepsilon}}\left(\frac{1}{\theta_{\varepsilon} \cdot \nu_{\varepsilon}}-1\right)^{2} d \sigma \\
& +\int_{S_{\varepsilon}} \frac{1}{4\left(\theta_{\varepsilon} \cdot \nu_{\varepsilon}\right)^{3}}\left(\lambda_{\varepsilon}^{(1)}+\lambda_{\varepsilon}^{(2)}\right)^{2}-\frac{1}{6} \lambda_{\varepsilon}^{(1)} \lambda_{\varepsilon}^{(2)} d \sigma
\end{aligned}
$$

where:

- ν_{ε} is an orientation on S_{ε} and $\theta_{\varepsilon} \cdot \nu_{\varepsilon}>0$ on S_{ε}
- $\lambda_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(2)}$ are the eigenvalues of the covariant derivative of θ_{ε}

This estimate suggests that the limit energy should take the form

$$
\int_{S} \frac{1}{4} \mathrm{H}_{S}^{2}-\frac{1}{6} \mathrm{~K}_{S} d \sigma
$$

Generalized surfaces (Geometric Measure Theory)

- PDEs/Classical variational problem \longrightarrow weak notion of function
- Geometric variational problem \longrightarrow weak notion of surface

smooth objects	weak objects
functions	distributions
surfaces	currents, varifolds, \ldots

By definition:

- Currents: dual of the space of test differential forms (work fine with oriented-area problems)
- Varifolds: Radon measures on $\mathbb{R}^{d} \times G$ Grassmann manifold of all unoriented hyperplanes (work fine with curvature problems)

Intermezzo: are generalized surfaces really necessary?
 Scienze Matema
G. L. Lagrange

Intermezzo: are generalized surfaces really necessary?

Working with currents: compactness but no curvature

Given a smooth surface S the canonical current associated to S is given by

$$
\langle S, \omega\rangle:=\int_{S}\langle\omega, \eta\rangle d \sigma, \quad \eta \text { orientation on } S
$$

- Compactness holds true if we have a bound on the area

For our problem we have compactness of the currents S_{ε}, but we do not have a good notion of curvature of a current

Working with varifolds: curvature but no compactness

Given a smooth surface S the canonical varifold associated to S is given by

$$
\left\langle V_{S}, \psi\right\rangle:=\int_{S} \psi\left(x, T_{x} S\right) d \sigma, \quad \psi \in C_{c}^{0}\left(\mathbb{R}^{3} \times G(2,3)\right)
$$

- We have a good notion of a second fundamental form of a varifold (hence good notions of mean curvature and gaussian curvature)
- Compactness holds true if we have a bound on the second fundamental form For our problem the bound

$$
G_{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right) \leq c
$$

does not provide a bound on the second fundamental form of the varifold $V_{S_{\varepsilon}}$ since θ_{ε} is not orthogonal to S_{ε}

Working with Gauss graphs

Exploiting the estimate

$$
c \geq G_{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right) \geq \int_{S_{\varepsilon}} \frac{1}{4}\left(\lambda_{\varepsilon}^{(1)}+\lambda_{\varepsilon}^{(2)}\right)^{2}-\frac{1}{6} \lambda_{\varepsilon}^{(1)} \lambda_{\varepsilon}^{(2)} d \sigma
$$

it is relatively easy to realize that the area of

$$
G_{\varepsilon}:=\left\{\left(p, \theta_{\varepsilon}(p)\right): p \in S_{\varepsilon}\right\}
$$

remains bounded. When $\varepsilon \sim 0$ the area of G_{ε} should be the area of the graph of the Gauss map on S. In the area of the graph of the Gauss map are encoded informations on the curvature of S : the idea is therefore to consider the currents

$$
G_{\varepsilon}
$$

Generalized Gauss graphs (Anzellotti-Serapioni-Tamanini, Indiana 1990)

If T is a Generalized Gauss graph, that is a limit, as a current, of Gauss graphs of smooth surfaces, then:

- T is an integer rectifiable current, i.e.

$$
\begin{gathered}
\langle T, \omega\rangle=\int_{R}\langle\omega, \eta\rangle \beta d \sigma, \quad R \text { rectifiable, } \eta \text { orientation on } R, \\
\beta: R \rightarrow \mathbb{Z}
\end{gathered}
$$

■ Up to \mathcal{H}^{2}-negligible sets, R is a countable union of Gauss graphs of smooth and orientable surfaces

- There exists a stable notion of principal curvatures of T

Back to compactness and liminf

- The estimate

$$
G_{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right) \gtrsim \int_{S_{\varepsilon}} \frac{1}{4}\left(\lambda_{\varepsilon}^{(1)}+\lambda_{\varepsilon}^{(2)}\right)^{2}-\frac{1}{6} \lambda_{\varepsilon}^{(1)} \lambda_{\varepsilon}^{(2)} d \sigma
$$

says that the area of G_{ε} is bounded

- When $\varepsilon \rightarrow 0$ the transport rays θ_{ε} tend to be normal, therefore

$$
T_{G_{\varepsilon}} \rightharpoonup \text { Generalized Gauss graph }
$$

- Thanks to the stability of principal curvatures it is possible to pass to the limit in

$$
\int_{S_{\varepsilon}} \frac{1}{4}\left(\lambda_{\varepsilon}^{(1)}+\lambda_{\varepsilon}^{(2)}\right)^{2}-\frac{1}{6} \lambda_{\varepsilon}^{(1)} \lambda_{\varepsilon}^{(2)} d \sigma
$$

Further investigations

- Complete the Γ-lim inf inequality

■ Biological structure of limits currents/varifolds

- Higher codimension
- Local minimizers of F_{ε} (recent papers by Buttazzo et al.)
- Try to minimize directly the Helfrich functional on generalized Gauss graphs (with M. Morandotti)
- Local minimizers/critical points of Helfrich?
\qquad

POLITECNICO

Thank you!

