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Banach Fixed Point Theorem 1922

A point x is said to be a �xed point for single - valued mapping

f : X → X if x = f (x).

Let (X , ρ) be a non-empty complete metric space and the mapping

f : X → X is such that there exists q ∈ [0, 1) such that

d(f (x), f (y)) ≤ qρ(x , y) for all x , y ∈ X .

Then f admits a unique �xed-point x∗ ∈ X i.e. f (x∗) = x∗.
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Nadler Fixed Point Theorem 1969

Let F : X ⇒ X is a set - valued mapping i.e. x 7→ F (x).
A point x is said to be a �xed point for F if x ∈ F (x)

Let (X , ρ) be a non-empty complete metric space. The set - valued

mapping F : X ⇒ X is closed valued and there exists q ∈ [0, 1) such that

H(F (x),F (y)) ≤ qρ(x , y)for all x , y ∈ X .

Then there exists x∗ ∈ X such that x∗ ∈ F (x∗).
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We consider R+, set A = [0, 1] and set B = [2, 4].

d(a, b) = |b − a|.
d(a,B) = inf

b ∈ B
d(a, b) = |2− 1| = 1.

e(A,B) = sup
a ∈ A

d(a,B)⇒ e(A,B) = d(0, 2) = 2, e(B,A) = d(1, 4) = 3.

H(A,B) = max{e(A,B), e(B,A)} = max{1, 3} = 3.
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Dontchev, Hager Fixed Point Theorem 1994

Let (X , ρ) be a non-empty complete metric space. The set - valued

mapping F : X ⇒ X is closed valued and there exists q ∈ [0, 1), x0 ∈ X , r
and q such that 0 ≤ q < 1 and

(i) d(x0,F (x0)) < r(1− q);

(ii) e(F (x1) ∩ Br (x0),F (x2)) ≤ qρ(x1, x2) for all x1, x2 ∈ Br (x0).

Then F has a �xed point in Br (x0), i.e. there exist x ∈ Br (x0) such that

x ∈ F (x). If F is single - valued, then x is unique.
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Partial metric

Let X be a nonempty set. A function p : X × X → R+ (where R+ denotes

the set of all nonnegative real numbers) is said to be a partial metric on X
if for any x , y , z ∈ X , the following conditions hold:

(i) p(x , x) = p(y , y) = p(x , y) if and only if x = y ;

(ii) p(x , x) ≤ p(x , y);

(iii) p(x , y) = p(y , x);

(iv)p(x , y) ≤ p(x , z) + p(z , y)− p(z , z).

The pair (X , p) is called a partial metric space.

The p− ball in X with center x̄ and radius r is de�ned by:

Br (x̄) = {x ∈ X | p(x , x̄) < p(x̄ , x̄) + r}.
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Bianchini - Grandolfy function:

Assume that the increasing and continuous functions ϕ, ψ : J → J, where
J is an interval on R+ containing 0, are such that:

(i)ϕ(t) ≤ t, ∀t ∈ J;

(ii)ϕ(0) = ψ(0) = 0;

(iii)ψ ◦ ϕ is Bianchini-Grandol� gauge function such that

s(t) =
∞∑
n=0

(ψ ◦ ϕ)n(t) <∞ for all t ∈ J.
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Main result: Double contraction mapping principle

Let (X , p) and (Y , σ) are complete partial metric spaces and x̄ ∈ X , ȳ ∈ Y .
Consider the set-valued mappings F : X ⇒ Y and G : Y ⇒ X such that

x̄ ∈ G (ȳ), ȳ ∈ F (x̄). There exists a constant r > 0 such that for all

x ∈ Br (x̄) and for all y ∈ Br (ȳ), F and G are closed valued.

Suppose that there exists α ∈ J \ {0} such that the following assumptions

hold:

(a) d(x̄ ,G (ȳ)) < α;
(b) d(ȳ ,F (x̄)) < α, where s(α) ≤ min{p(x̄ , x̄), σ(ȳ , ȳ)}+ r ;
(c) e(F (x1) ∩ Br (ȳ),F (x2)) ≤ ϕ(p(x1, x2)), for all x1, x2 ∈ Br (x̄);
(d) e(G (y1) ∩ Br (x̄),G (y2)) ≤ ψ(σ(y1, y2)), for all y1, y2 ∈ Br (ȳ).

Then there exist x ∈ Br (x̄) and y ∈ Br (ȳ) such that y ∈ F (x) and

x ∈ G (y).
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Coupled �xed point

Let F : X × X ⇒ X be a set-valued mapping.

An element (x ; y) ∈ X × X is called a coupled �xed point of F if{
x ∈ F (x , y)
y ∈ F (y , x)
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Corollary: Coupled �xed point theorem

Let (X , p) be a complete partial metric spaces and x̄ ∈ X . Consider
G : X ⇒ X , F : X × X ⇒ X . There exists a constant r > 0 such that

F (x , x) is nonempty closed subset of X for all x ∈ Br (x̄) and G (x) is

nonempty closed subset of Y for all y ∈ Br (ȳ).

Suppose that there exists α ∈ J \ {0} such that the following assumptions

hold:

(a) d(x̄ ,F (x̄ , x̄)) < α;
(b) d(x̄ ,G (x̄)) < α, where s(α) ≤ p(x̄ , x̄) + r ;
(c) e(F (x , y) ∩ Br (x̄),F (u, v)) ≤ ϕ(max{p(x , u), p(y , v)});
(d) e(G (x) ∩ Br (x̄),G (u)) ≤ ψ(p(x , u)), for all x , y , u, v ∈ Br (x̄).

Then there exist x , y ∈ Br (x̄) such that x ∈ G (F (x , y)) and

y ∈ G (F (y , x)).
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