Local Contraction Mapping Principle in Partial Metric Spaces XXI International Conference on Geometry, Integrability and Quantization

Diana Kirilova Nedelcheva

2019

A point x is said to be a fixed point for single - valued mapping $f: X \to X$ if x = f(x).

Let (X, ρ) be a non-empty complete metric space and the mapping $f: X \to X$ is such that there exists $q \in [0, 1)$ such that

 $d(f(x), f(y)) \le q\rho(x, y)$ for all $x, y \in X$.

Then f admits a unique fixed-point $x^* \in X$ i.e. $f(x^*) = x^*$.

Let $F : X \rightrightarrows X$ is a set - valued mapping i.e. $x \mapsto F(x)$. A point x is said to be a fixed point for F if $x \in F(x)$

Let (X, ρ) be a non-empty complete metric space. The set - valued mapping $F : X \rightrightarrows X$ is closed valued and there exists $q \in [0, 1)$ such that

 $H(F(x), F(y)) \le q\rho(x, y)$ for all $x, y \in X$.

Then there exists $x^* \in X$ such that $x^* \in F(x^*)$.

We consider \mathbb{R}^+ , set A = [0, 1] and set B = [2, 4].

$$d(a, b) = |b - a|.$$

$$d(a, B) = \inf_{b \in B} d(a, b) = |2 - 1| = 1.$$

$$e(A, B) = \sup_{a \in A} d(a, B) \Rightarrow e(A, B) = d(0, 2) = 2, e(B, A) = d(1, 4) = 3.$$

$$H(A, B) = \max\{e(A, B), e(B, A)\} = \max\{1, 3\} = 3.$$

Let (X, ρ) be a non-empty complete metric space. The set - valued mapping $F : X \rightrightarrows X$ is closed valued and there exists $q \in [0, 1), x_0 \in X, r$ and q such that $0 \le q < 1$ and

(i)
$$d(x_0, F(x_0)) < r(1-q);$$

(ii) $e(F(x_1) \cap B_r(x_0), F(x_2)) \le q\rho(x_1, x_2)$ for all $x_1, x_2 \in B_r(x_0).$

Then F has a fixed point in $B_r(x_0)$, i.e. there exist $x \in B_r(x_0)$ such that $x \in F(x)$. If F is single - valued, then x is unique.

Let X be a nonempty set. A function $p: X \times X \to R^+$ (where R^+ denotes the set of all nonnegative real numbers) is said to be a partial metric on X if for any $x, y, z \in X$, the following conditions hold:

(i)
$$p(x,x) = p(y,y) = p(x,y)$$
 if and only if $x = y$;
(ii) $p(x,x) \le p(x,y)$;
(iii) $p(x,y) = p(y,x)$;
(iv) $p(x,y) \le p(x,z) + p(z,y) - p(z,z)$.
The pair (X,p) is called a partial metric space.

The p- ball in X with center \bar{x} and radius r is defined by:

$$\mathbb{B}_r(\bar{x}) = \{x \in X \mid p(x,\bar{x}) < p(\bar{x},\bar{x}) + r\}.$$

Assume that the increasing and continuous functions φ , $\psi: J \to J$, where J is an interval on \mathbb{R}_+ containing 0, are such that:

$$(i)\varphi(t) \leq t, \forall t \in J;$$

$$(ii)\varphi(0) = \psi(0) = 0;$$

 $(\it iii)\psi\circ arphi$ is Bianchini-Grandolfi gauge function such that

$$s(t) = \sum_{n=0}^{\infty} (\psi \circ \varphi)^n(t) < \infty$$
 for all $t \in J$.

Let (X, p) and (Y, σ) are complete partial metric spaces and $\bar{x} \in X, \bar{y} \in Y$. Consider the set-valued mappings $F : X \rightrightarrows Y$ and $G : Y \rightrightarrows X$ such that $\bar{x} \in G(\bar{y}), \bar{y} \in F(\bar{x})$. There exists a constant r > 0 such that for all $x \in \mathbb{B}_r(\bar{x})$ and for all $y \in \mathbb{B}_r(\bar{y}), F$ and G are closed valued.

Suppose that there exists $\alpha \in J \setminus \{0\}$ such that the following assumptions hold:

$$\begin{array}{ll} (a) \ d(\bar{x}, G(\bar{y})) < \alpha; \\ (b) \ d(\bar{y}, F(\bar{x})) < \alpha, & \text{where} \quad s(\alpha) \leq \min\{p(\bar{x}, \bar{x}), \sigma(\bar{y}, \bar{y})\} + r; \\ (c) \ e(F(x_1) \cap \mathbb{B}_r(\bar{y}), F(x_2)) \leq \varphi(p(x_1, x_2)), & \text{for} \quad all \quad x_1, x_2 \in \mathbb{B}_r(\bar{x}); \\ (d) \ e(G(y_1) \cap \mathbb{B}_r(\bar{x}), G(y_2)) \leq \psi(\sigma(y_1, y_2)), & \text{for} \quad all \quad y_1, y_2 \in \mathbb{B}_r(\bar{y}). \end{array}$$

Then there exist $x \in \mathbb{B}_r(\bar{x})$ and $y \in \mathbb{B}_r(\bar{y})$ such that $y \in F(x)$ and $x \in G(y)$.

Let $F : X \times X \rightrightarrows X$ be a set-valued mapping. An element $(x; y) \in X \times X$ is called a coupled fixed point of F if

 $\begin{cases} x \in F(x, y) \\ y \in F(y, x) \end{cases}$

Let (X, p) be a complete partial metric spaces and $\bar{x} \in X$. Consider $G: X \rightrightarrows X, F: X \times X \rightrightarrows X$. There exists a constant r > 0 such that F(x, x) is nonempty closed subset of X for all $x \in \mathbb{B}_r(\bar{x})$ and G(x) is nonempty closed subset of Y for all $y \in \mathbb{B}_r(\bar{y})$.

Suppose that there exists $\alpha \in J \setminus \{0\}$ such that the following assumptions hold:

$$\begin{array}{ll} (a) \ d(\bar{x},F(\bar{x},\bar{x})) < \alpha; \\ (b) \ d(\bar{x},G(\bar{x})) < \alpha, & \textit{where} \quad s(\alpha) \leq p(\bar{x},\bar{x}) + r; \\ (c) \ e(F(x,y) \cap \mathbb{B}_r(\bar{x}),F(u,v)) \leq \varphi(\max\{p(x,u),p(y,v)\}); \\ (d) \ e(G(x) \cap \mathbb{B}_r(\bar{x}),G(u)) \leq \psi(p(x,u)), & \textit{for} \quad \textit{all} \quad x,y,u,v \in \mathbb{B}_r(\bar{x}). \end{array}$$

Then there exist $x, y \in \mathbb{B}_r(\bar{x})$ such that $x \in G(F(x, y))$ and $y \in G(F(y, x))$.

THANK YOU FOR YOUR ATTENTION!