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Abstract

In these lectures we give an introduction to the theory of Clifford algebras. Clifford algebra was invented

by W. Clifford in 1878. In his research he combined Hamiltons quaternions (1843) and Grassmanns

exterior algebra (1844). Further development of the theory of Clifford algebras is associated with

a number of famous mathematicians and physicists – R. Lipschitz, T. Vahlen, E. Cartan, E. Witt,

C. Chevalley, M. Riesz and others. Dirac equation (1928) had a great influence on the development of

Clifford algebra. Clifford algebra is used in different branches of modern mathematics and physics.

In the first two lectures we study the most important structures related to Clifford algebras and give

different examples. In the third lecture we study relation between matrix formalism and formalism

of Clifford algebras. In the forth lecture we will speak about different Lie groups in Clifford algebras

and corresponding Lie algebras. The most important of them are spin groups. In the last lecture we

will speak about one of the most important applications of Clifford algebras – Dirac equation for the

electron.

Outline

Lecture 1: Clifford Algebras and Related Structures

Definition of Clifford algebras. Examples in small dimensions: complex numbers, double num-

bers, quaternions, Pauli’s matrices, Dirac’s matrices. Grassmann algebra. Z2-grading, grade

involution, reversion, Clifford conjugation. Center of Clifford algebra.

Lecture 2: Unitary Spaces on Clifford Algebras

Hermitian scalar product in Clifford algebras. Operation of Hermitian conjugation and unitary

groups in Clifford algebras.

Lecture 3: Matrix Representations of Clifford Algebras.

Cartan’s periodicity of 8 for Clifford algebras. Faithful and irreducible representations. Primitive

idempotents and minimal left ideals.

Lecture 4: Lie Groups and Lie Algebras in Clifford Algebras.

Spin groups as subgroups of Clifford and Lipschitz groups. Double covers of the orthogonal

groups. Cartan-Dieudonne theorem. Spin groups in small dimensions. Lie groups in Clifford

algebras and corresponding Lie algebras.

Lecture 5: Dirac Equation.

Dirac equation in Clifford algebras. Dirac-Hestenes equation. Spinors in n dimensions.
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