
Appendix A
Elliptical Integrals and Functions

Elliptic integrals and functions are mathematical objects, which nowadays are often
omitted in the mathematical curricula of universities. One quite trivial explanation
is the presence of plenty of efficient computational programs that can be imple-
mented on modern computers. While the standard integration techniques allow us to
obtain explicit expressions (in terms of trigonometric, exponential and logarithmic
functions) for every integral of the form

∫
R(x,

√
P(x))dx,

where R(x,
√
P(x)) is a rational function, and P(x) is a linear or quadratic poly-

nomial, we have to widen our vocabulary of “elementary” functions if we want to
work with polynomials of higher degree. In particular, when P(x) is a polynomial
of the third or fourth degree, the corresponding function is called elliptic. Of course,
when teaching calculus, one must stop somewhere, and it is reasonable to stay loyal
to well-known linear and quadratic functions, while using numerical methods to
calculate integrals of the third and fourth degree. The possibilities of easy-to-use
computer systems for symbolic manipulation of the type represented by Maple�

and Mathematica� makes this course of action even more understandable.
The main point in this Appendix is that elliptic functions provide effective means

for the description of geometric objects. The second is that the above-mentioned
computer programs, through their built-in tools for calculation and visualization,
are, in fact, a real motivation for the teaching and using of elliptic functions.

In this Appendix, we will consider a few examples in order to prove that elliptic
integrals and functions are necessary to get more interesting geometric and mechan-
ical information than that given by direct numerical calculations.

The history of the development of elliptic functions can be followed in Stillwell
(1989). Clear statements of their properties and applications can be found in the
books by Greenhill (1959), Hancock (1958), Bowman (1953) and Lawden (1989).
A more recent approach to the problem from the viewpoint of dynamical systems is
given by Meyer (2001).
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204 Appendix A: Elliptical Integrals and Functions

A.1 Jacobian Elliptic Functions

The easiest way to understand elliptic functions is to consider them as analogous to
ordinary trigonometric functions. From the calculus, we know that

arcsin(x) =
∫ x

0

du√
1 − u2

·

Of course, if x = sin(t), −π/2 ≤ t ≤ π/2, we will have

t = arcsin(sin(t)) =
∫ sin(t)

0

du√
1 − u2

· (A.1)

In this case, we can consider sin(t) as the inverse function of the integral (A.1).
The real understanding of trigonometric functions includes knowledge of their
graphs, their connection with other trigonometric functions, such as in sin2(θ) +
cos2(θ) = 1, and of course, the fundamental geometric and physical parameters in
which they are included (i.e., circumferences and periodical movements). We will
follow this example for elliptic functions too.

Let us begin by fixing some k, 0 ≤ k ≤ 1, which, from now on, will be called an
elliptic modulus and introduce the following:

Definition A.1 The Jacobi sine function sn(u, k) is the inverse function of the fol-
lowing integral:

u =
∫ sn(u,k)

0

dt√
1 − t2

√
1 − k2t2

· (A.2)

More generally, we will call

F(z, k) =
∫ z

0

dt√
1 − t2

√
1 − k2t2

(A.3)

the elliptic integral of the first kind. The elliptic integrals of the second and third
kinds are defined by the equations

E(z, k) =
∫ z

0

√
1 − k2t2√
1 − t2

dt (A.4)

Π(n, z, k) =
∫ z

0

dt

(1 + nt2)
√

(1 − t2)(1 − k2t)
·

When the argument z in F(z, k), E(z, k) and Π(n, z, k) is equal to one, these
integrals are denoted, respectively, as K (k), E(k) and Π(n, k) and called complete
elliptic integrals of the first, second and third kinds, respectively.
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If we put t = sin φ, the above integrals are transformed, respectively, into

F(φ, k) =
∫ φ

0

dφ√
1 − k2 sin2 φ

E(φ, k) =
∫ φ

0

√
1 − k2 sin2 φ dφ (A.5)

Π(n,φ, k) =
∫ φ

0

dφ

(1 + n sin2 φ)
√
1 − k2 sin2 φ

·

Let us note that when k ≡ 1, E(φ, 1) = sin φ, and therefore one can consider
E(φ, k) to be a generalization of the function sin φ.

The Jacobi cosine function cn(u, k) can be defined in terms of sn(u, k) by means
of the identity

sn2(u, k) + cn2(u, k) = 1. (A.6)

The third Jacobi elliptic function dn(u, k) is defined by the equation

dn2(u, k) + k2 sn2(u, k) = 1. (A.7)

The integral definition of sn(u, k)makes it clear that sn(u, 0) = sin(u). Of course,
cn(u, 0) = cos(u) as well.

Besides sn, cn and dn, there are another nine functions that are widely used, and
their definitions are given below:

ns = 1

sn
, nc = 1

cn
, nd = 1

dn

sc = sn

cn
, cd = cn

dn
, ds = dn

sn

cs = cn

sn
, dc = dn

cn
, sd = sn

dn
·

The derivatives of the elliptic functions can be found directly from their definitions
(or vice versa, as in Meyer (2001), where the elliptical functions are defined by their
derivatives). For instance, the derivative of sn(u, k) may be computed as follows. In
(A.3), suppose that z = z(u). Then,

dF

du
= dF

dz

dz

du
= 1√

1 − z2
√
1 − k2z2

dz

du
·
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But from (A.2) and (A.3), we know that for z = sn(u, k), we have F(z, k) = u.
So, replacing z with sn(u, k) and using du/du = 1, we obtain

1 = 1√
1 − sn(u, k)2

√
1 − k2sn(u, k)2

d sn(u, k)

du

d sn(u, k)

du
=

√
1 − sn(u, k)2

√
1 − k2sn(u, k)2 (A.8)

d sn(u, k)

du
= cn(u, k) dn(u, k).

After differentiation to (A.6) with respect of u and taking into account (A.8), we
obtain

d cn(u, k)

du
= −sn(u, k) dn(u, k), (A.9)

Finally, after differentiating (A.7) and using (A.8) once more, we have

d dn(u, k)

du
= −k2sn(u, k) cn(u, k). (A.10)

Symbolic computational programs such as Maple� or Mathematica� have
embedded modules for working with elliptic functions, so these functions can be
easily drawn. Graphs of the elliptic sin function sn, cos function cn and function dn
are shown in Fig.A.1. We can see that sn(u, k) and cn(u, k) are periodic. We can
define their period referring to the definitions above (see A.2)

K (k) =
∫ 1

0

dt√
1 − t2

√
1 − k2t2

·

Wecan see that sn(K (k), k)= 1.Obviously, from the graph,we are also convinced
that K (k) is 1/4 of the sn(u, k) period and that the period of dn(u, k) is 2K (k). Of
course, this can be checked analytically (e.g., see Woods (1934), p. 368), but this
argument satisfies our objectives.

Fig. A.1 Graphs of the
elliptic sin function sn(u, k),
elliptic cos function cn(u, k)
and the function dn(u, k)
drawn with k = 1√
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Using the computer program, we can look for a numerical solution, from which
we can find K (k), i.e., to solve the equation sn(u, k) = 1. Note that the equation
sn2(u, k) + cn2(u, k) = 1 supposes that cn(u, k) has the same period as sn(u, k),
and therefore cn(K (k), k) = 0.

Now we have an idea of the algebraic and graphic properties of the elliptic
functions. In order to “complement” our understanding, let us look at two simple
examples—one physical and one geometrical.

Example A.1 (Pendulum) Let the angle of a pendulum swing be denoted by x . Then,
it is straightforward to derive that the equation of motion is: ẍ+(g/ l) sin(x) = 0,
where g is the acceleration due to gravity and l is the length of the pendulum. If we
take such units that give g/ l = 1, the pendulum equation becomes ẍ + sin(x) = 0.
Then, we can multiply by ẋ to obtain

ẋ(ẍ + sin(x)) = 0

ẋ ẍ + 2 sin(x)
ẋ

2
= 0

ẋ ẍ + 4 sin
( x
2

)
cos

( x
2

) ẋ

2
= 0,

and, by integrating the last equation, end up with

1

2
ẋ2 + 2 sin2

( x
2

)
= c. (A.11)

Note also that because of the identity 2 sin2(x/2) = 1 − cos(x), the last equation
expresses the conservation of energy of the motion of a particle with a unit mass.
Now let z = sin(x/2), and therefore 2ż = cos(x/2)ẋ = √

1 − z2 ẋ . Then,

4ż2 = (1 − z2)ẋ2 = ẋ2 − sin2
( x
2

)
ẋ2 = ẋ2 cos2

( x
2

)

ż2 = 1

4
ẋ2 cos2

( x
2

)
.

By the first part of the calculation, we have

1

4
ẋ2 = 1

2
c − sin2

( x
2

)
= 1

2
c − z2 and cos2

( x
2

)
= 1 − z2.

Hence, ż2 = (A − z2)(1 − z2), where A = c/2. Taking a square root and sepa-
rating the variables gives us

t =
∫ z

0

dz√
(A − z2)(1 − z2)

=
∫ √

Au

0

du√
(1 − u2)(1 − Au2)

= F(
√
Au,

√
A).
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That is, we see that the elliptic integrals appear even in the most standard of
mechanical situations.

Example A.2 (Ellipse) Let us parameterize the ellipse by the polar angle, which we
will denote by t, i.e., α(t) = (x(t), z(t)) = (a sin(t), c cos(t)), where 0 ≤ t ≤ 2π,

and a ≥ c. Then, the arclength integral is

L =
∫ 2π

0

√
ẋ2 + ż2 dt = 4

∫ π/2

0

√
a2 cos2(t) + c2 sin2(t) dt

= 4a
∫ 2π

0

√
1 − ε2 sin2(t) dt,

in which ε=√
a2−c2/a is the eccentricity of the ellipse. If we substitute sin(t)=u,

then dt = du/
√
1 − u2, and in this way, we obtain

L = 4a
∫ 1

0

√
1 − ε2u2√
1 − u2

du = 4a E(ε).

So, we have been convinced once more that the elliptic integrals present them-
selves even in the most natural geometric problems.

All Jacobian elliptic functions have integrals, given by the formulas below, that
can be verified by direct differentiations

∫
snu du =1

k
ln(dnu − kcnu),

∫
cnu du =1

k
arcsin(ksnu)

∫
dnu du = arcsin(snu),

∫
nsu du = − ln(dsu + csu)

∫
ncu du =1

k̃
ln(dcu + k̃scu),

∫
ndu du =1

k̃
arcsin(cdu)

∫
scu du =1

k̃
ln(dcu + k̃ncu),

∫
cdu du =1

k
ln(ncu + scu)

∫
dsu du = ln(nsu − csu),

∫
csu du = − ln(nsu + dsu)

∫
dcu du = ln(ncu + scu),

∫
sdu du = − 1

kk̃
arcsin(kcdu).
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A.2 Weierstrassian Elliptic Functions

Let us consider the elliptic integral of the first kind in the Weierstrassian approach

u =
∫ ∞

z

dz√
4z3 − g2z − g3

, (A.12)

in which g2 and g3 are arbitrary complex numbers.
It can be proven that the above integral defines z as a unique function of u, denoted

as ℘(u, g2, g3), in which u is the argument and g2 and g3 are the so-called invariants
of the function ℘.

One should note that if the discriminant Δ = g32 − 27g23 of the cubic polynomial
under the square root (A.12) is positive, then it takes real values for real values of z.

Besides℘(u), Weierstrass introduced another two functions-ζ(u) and σ(u). They
are defined by the equalities

ζ(u) = 1

u
−

∫ u

0
(℘ (ũ) − 1

ũ2
)dũ (A.13)

and

σ(u) = u exp(
∫ u

0
(ζ(ũ) − 1

ũ
)dũ). (A.14)

Of themany interestingproperties of theWeierstrassian functions,wewillmention
only those which have some direct relations to the applications used in the present
text, namely,

ζ ′(u) = −℘(u),
σ′(u)

σ(u)
= ζ(u) (A.15)

℘(−u) = ℘(u), ζ(−u) = −ζ(u), σ(−u) = −σ(u).
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