MOTION OF CHARGED PARTICLES FROM THE GEOMETRIC VIEW POINT

OSAMU IKAWA

Communicated by Charles-Michel Marle

Abstract

This is a review article on the motion of charged particles related to the author's study. The equation of motion of a charged particle is defined as a curve satisfying a certain differential equation of second order in a semi-Riemannian manifold furnished with a closed two-form. Charged particle is a generalization of geodesic. We shall oversee the geometric aspect of charged particles.

1. Introduction

Let F be a closed two-form and U a function on a connected semi-Riemannian manifold $(M,\langle\rangle$,$) , where \langle$,$\rangle is a semi-Riemannian metric on M$. We denote by $\bigwedge^{m}(M)$ the space of m-forms on M. Denote by $\iota(X): \bigwedge^{m}(M) \rightarrow \bigwedge^{m-1}(M)$ the interior product operator induced from a vector field X on M, and by \mathcal{L} : $T(M) \rightarrow T^{*}(M)$, the Legendre transformation from the tangent bundle $T(M)$ of M onto the cotangent bundle $T^{*}(M)$, which is defined by

$$
\begin{equation*}
\mathcal{L}: T(M) \rightarrow T^{*}(M), \quad u \mapsto \mathcal{L}(u), \quad \mathcal{L}(u)(v)=\langle u, v\rangle, \quad u, v \in T(M) \tag{1}
\end{equation*}
$$

A curve $x(t)$ in M is called the motion of a charged particle under electromagnetic field F and potential energy U, if it satisfies the following second order differential equation

$$
\begin{equation*}
\nabla_{\dot{x}} \dot{x}=-\operatorname{grad} U-\mathcal{L}^{-1}(\iota(\dot{x}) F) \tag{2}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of M. Here $\nabla_{\dot{x}} \dot{x}$ means the acceleration of the charged particle. Since $-\mathcal{L}^{-1}(\iota(\dot{x}) F)$ is perpendicular to the direction \dot{x} of the movement, $-\mathcal{L}^{-1}(\iota(\dot{x}) F)$ means the Lorentz force. This equation originated in the theory of general relativity (see $\S 2$ or [26]). When $F=0$ and $U=0$, then $x(t)$ is merely a geodesic. When M is a Kähler manifold with a complex structure J, then it is natural to take a scalar multiple of the Kähler form Ω defined

