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1. Introduction

In the years 1908 – 1914, the period which experienced a dramatic flowering of
creativity in the special theory of relativity, the Croatian physicist and mathemati-
cian Vladimir Varičak (1865 – 1942), professor and rector of Zagreb University,
showed that this theory has a natural interpretation in the hyperbolic geometry
of János Bolyai and Nikolai Ivanovich Lobachevsky [22]. However, much to
his chagrin, Varičak had to admit in 1924 [23, p. 80] that the adaption of vector
algebra for use in hyperbolic geometry was just not feasible. Fortunately, the au-
thor’s studies of Einstein’s velocity addition law of special relativity theory since
1988 [11] led him to discover the way of introducing into hyperbolic geometry
both Cartesian coordinates and hyperbolic vector algebra. Hyperbolic vectors are
called gyrovectors and their algebra is called gyroalgebra. The author’s introduc-
tion of Cartesian coordinates and gyrovector gyroalgebra results in the gyrovector
space approach to hyperbolic geometry, which is the title of the book under re-
view, in a way fully analogous to the familiar vector space approach to Euclidean
geometry. In order to elaborate a precise language for dealing with the resulting
analytic hyperbolic geometry, which emphasizes analogies with classical notions,
the author introduced the prefix “gyro”, giving rise to gyrolanguage, the author’s
language of gyrogroups, gyrovector spaces and analytic hyperbolic geometry.

When I became familiar with the author’s elegant work in analytic hyperbolic
geometry several years ago, I invited him to publish some of his results in volumes
that I have edited [12–14].
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2. Einstein Addition

Let R
n be the Euclidean n-space equipped with Cartesian coordinates. These are

all the n-tuples (x1, x2, . . . , xn) of real numbers satisfying

x2

1 + x2

2 + . . . + x2

n < ∞ . (1)

Similarly, let

R
n
s = {v = (x1, x2, . . . , xn) ∈ R

n ; ‖v‖ < s} (2)

be the s-ball of R
n for an arbitrarily fixed constant s > 0. The ball R

n
s is equipped

with Cartesian coordinates, which are all the n-tuples (x1, x2, . . . , xn) of real
numbers satisfying

x2

1 + x2

2 + . . . + x2

n < s2 . (3)

Points of the resulting Cartesian model of the ball R
n
s are n-tuples of real numbers.

The point 0 = (0, 0, . . . , 0) (n zeros) is the origin of the ball R
n
s .

Einstein addition, ⊕, of relativistically admissible velocities is a binary operation
in the ball R

n
s of all relativistically admissible velocities, where if n = 3, then

s = c is the speed of light in empty space. It was introduced by Einstein in his
1905 [1] paper that founded the special theory of relativity. In modern notation,
Einstein’s velocity addition law takes the form

u⊕v =
1

1 + u·v

s2

{

u +
1

γ
u

v +
1

s2

γ
u

1 + γ
u

(u·v)u

}

(4)

u,v ∈ R
n
s , where γ

u
is the gamma factor

γ
u

=
1

√

1 − ‖u‖2

s2

(5)

in R
n
s , and where · and ‖·‖ are the inner product and norm that the ball R

n
s inherits

from its space R
n. Einstein subtraction, 	, is given by u	v = u⊕(−v) so that

v	v = 0, as expected.

Without loss of generality, one may select s = 1 for simplicity. However, the
author prefers to leave s as a free positive parameter, allowing the limit as s → ∞,
when the modern and unfamiliar reduces to the classical and familiar. Thus, for
instance, in that limit Einstein velocity addition (4) – (5) in R

n
s reduces to Newton
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velocity addition in R
n, which is the common vector addition, and gamma factors

reduce to 1.

Counterintuitively, Einstein addition is neither commutative nor associative. Ein-
stein’s failure to recognize and advance the rich structure of his velocity addition
law contributed to the eclipse of his velocity addition of relativistically admissible
three-velocities, creating a void that could be filled only with Minkowskian rela-
tivity, which is based on the Lorentz transformation group [16]. In 1988 the author
discovered in [11] the rich nonassociative algebraic structure of Einstein addition,
thus launching the fields of gyroalgebra, gyrogeometry and gyrotrigonometry that
are studied in the book under review.

Owing to its nonassociativity, Einstein addition gives rise to an operator, gyr,
called a gyrator

gyr : R
n
s ×R

n
s → Aut(Rn

s ,⊕) (6)

given by
gyr [u,v]w = 	(u⊕v)⊕{u⊕(v⊕w)} (7)

for all u,v,w ∈ R
n
s . We recall that a groupoid (Rn

s ,⊕) is a nonempty set, R
n
s ,

with a binary operation, ⊕, and its automorphism group, Aut(Rn
s ,⊕), is the group

of all bijections f : R
n
s → R

n
s of the groupoid (Rn

s ,⊕) that preserve its binary
operation, that is, f(u⊕v) = f(u)⊕f(v). The gyrator, gyr, generates gyrations,
gyr [u,v], which are automorphisms of (Rn

s ,⊕) and, hence, are also called gy-
roautomorphisms.

3. Gyroalgebra

We now consider the gyroalgebra topic of the book. It is clear from (7) that the
gyrations gyr [u,v] : R

n
s → R

n
s measure the extent to which Einstein addition

deviates from associativity, where associativity corresponds to trivial gyrations
(that is, gyrations given by the identity map of R

n
s onto itself). Surprisingly, gy-

rations turn out to be automorphisms of the Einstein groupoid (Rn
s ,⊕) that repair

the breakdown of both commutativity and associativity in Einstein addition. In-
deed, gyrations give rise to the following gyrocommutative law and left and right
gyroassociative laws of Einstein addition

u⊕v = gyr [u,v](v⊕u)

u⊕(v⊕w) = (u⊕v)⊕gyr [u,v]w

(u⊕v)⊕w = u⊕(v⊕gyr [v,u]w

(8)
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for all u,v,w ∈ R
n
s .

Accordingly, Einstein addition possesses a nonassociative structure regulated by
gyrations. Additionally, the gyrations contribute to Einstein addition their own
rich structure which is revealed, for instance, in the gyration identities

(gyr [u,v])−1 = gyr [v,u], gyr [u,v] = gyr [u⊕v,v] (9)

for all u,v ∈ R
n
s . Several other useful gyration identities are presented and em-

ployed in the book.

Guided by the group axioms and taking the key features of Einstein addition as
axioms led the author to define the abstract gyrogroup as follows:

Definition 1 (Gyrogroups) . A groupoid (G,⊕) is a gyrogroup if its binary oper-
ation satisfies the following axioms. In G there is at least one element, 0, called a
left identity, satisfying

G1) 0⊕a = a

for all a ∈ G. There is an element 0 ∈ G satisfying axiom G1) such that for each
a ∈ G there is an element 	a ∈ G, called a left inverse of a, satisfying

G2) 	a⊕a = 0

Moreover, for any a, b, c ∈ G there exists a unique element gyr [a, b]c ∈ G such
that the binary operation obeys the left gyroassociative law

G3) a⊕(b⊕c) = (a⊕b)⊕gyr [a, b]c

The map gyr [a, b] : G → G given by c 7→ gyr [a, b]c is an automorphism of the
groupoid (G,⊕), that is,

G4) gyr [a, b] ∈ Aut(G,⊕)

and the automorphism gyr [a, b] of G is called the gyroautomorphism, or the gy-
ration, of G generated by a, b ∈ G. The operator gyr : G × G → Aut(G,⊕)
is called the gyrator of G. Finally, the gyroautomorphism gyr [a, b] generated by
any a, b ∈ G possesses the left loop property

G5) gyr [a, b] = gyr [a⊕b, b] .

The gyrogroup axioms G1) – G5) are classified into three classes:

1) The first pair of axioms, G1) and G2), is a reminiscent of the group axioms.

2) The last pair of axioms, G4) and G5), presents the gyrator axioms.

3) The middle axiom, G3), is a hybrid axiom linking the two pairs of axioms
in 1) and 2).
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In full analogy with groups, gyrogroups are classified into gyrocommutative and
non-gyrocommutative gyrogroups.

Definition 2 (Gyrocommutative Gyrogroups) . A gyrogroup (G,⊕) is gyrocom-
mutative if its binary operation obeys the gyrocommutative law

G6) a ⊕ b = gyr [a, b](b ⊕ a)

for all a, b ∈ G.

The author presents in the book, and in [19], an elegant motivational approach to
gyrogroups in terms of the group of all Möbius transformations of the complex
open unit disc. It turns out that the set of all Möbius transformations of the disc
without rotations of the disc does not form a subgroup but, rather, it forms a
gyrocommutative gyrogroup.

A (commutative) group is a degenerate (gyrocommutative) gyrogroup whose gy-
roautomorphisms are all trivial. The algebraic structure of gyrogroups is, accord-
ingly, richer than that of groups. Thus, without losing the flavor of the group struc-
ture the author has generalized it into the gyrogroup structure to suit the needs of
Einstein addition in the ball.

Einstein addition admits a scalar multiplication, ⊗, given by

r⊗v =
1 − (γ

v
−

√

γ2
v
− 1)2r

1 + (γ
v
−

√

γ2
v
− 1)2r

γ
v

√

γ2
v
− 1

v (10)

r ∈ R, v ∈ R
n
s , v 6= 0, and r⊗0 = 0. Einstein scalar multiplication possesses

some properties of vector space scalar multiplication as, for instance,

n⊗v = v⊕ . . . ⊕v (n terms) (11)

for any positive integer n. However, Einstein scalar multiplication does not dis-
tribute over Einstein addition. Owing to the lack of a distributive law, Einstein
addition ⊕ = ⊕E in R

n
s gives rise to a distinct addition ⊕M in R

n
s , called the

Möbius addition, by the equation

u⊕Mv = 1

2
⊗(2⊗u⊕E2⊗v) . (12)

Since Einstein addition does not distribute with scalar multiplication, Einstein
addition, ⊕E , and Möbius addition, ⊕M , in (12) are distinct, but isomorphic, gy-
rocommutative gyrogroup additions. Both additions, ⊕E and ⊕M , admit the same
scalar multiplication, ⊗, that satisfies (11) for ⊕ = ⊕E and ⊕ = ⊕M .
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Let A, B ∈ R
n be two distinct points of the Euclidean n-space R

n. Then the set
of points Leuc

AB given by the equation

Leuc

AB = A + (−A + B)t (13)

t ∈ R, forms a straight line, which is the unique geodesic that passes through the
points A and B in the standard model of Euclidean geometry.

In full analogy, let A, B ∈ R
n
s be two distinct points in the s-ball of R

n. Then, in
full analogy with (13), let us consider the set of points given by each of the two
equations

Lein

AB = A⊕E(	EA⊕EB)⊗t

Lmob

AB = A⊕M(	EA⊕MB)⊗t
(14)

t ∈ R. Surprisingly, Lein

AB forms a chord of the ball, and Lmob

AB forms a circle in the
interior of the ball, which approaches the boundary of the ball orthogonally. What
is surprising here is that the former is the unique geodesic that passes through the
points A and B in the Beltrami-Klein ball model of hyperbolic geometry, and the
latter is the unique geodesic that passes through the points A and B in the Poincaré
ball model of hyperbolic geometry. The relationship between gyroalgebra and
analytic hyperbolic geometry thus emerges in a way analogous to the relationship
between algebra and analytic Euclidean geometry.

4. Gyrogeometry

We now consider the gyrogeometry topic of the book. Let (Rn
s ,⊕,⊗) be a gy-

rovector space, The two special cases which are studied in the book are the Ein-
stein gyrovector spaces (Rn

s ,⊕E ,⊗) and the Möbius gyrovector spaces (Rn
s ,⊕M ,⊗),

n ≥ 2. These, respectively, form the algebraic setting for the Cartesian-Beltrami-
Klein ball model of hyperbolic geometry and the Cartesian-Poincaré ball model of
hyperbolic geometry. To demonstrate the link between Einstein gyrovector spaces
(Rn

s ,⊕E ,⊗) and the Cartesian-Beltrami-Klein ball model of hyperbolic geometry
and, similarly, the link between Möbius gyrovector spaces (Rn

s ,⊕M ,⊗) and the
Cartesian-Poincaré ball model of hyperbolic geometry we need the notion of the
gyrodistance and two well-known results from differential geometry.

The gyrodistance function in (Rn
s ,⊕,⊗) is given by

d(u,v) = ‖u	v‖ (15)
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satisfying the gyrotriangle inequality

d(u,w) ≤ d(u,v)⊕d(v,w) (16)

for all u,v,w ∈ R
n
s .

In a two dimensional Einstein gyrovector space (R2
s,⊕,⊗) the squared gyrodis-

tance between a point v = (x1, x2) ∈ R
2
s and an infinitesimally nearby point

v + dv ∈ R
2
s , where dv = (dx1, dx2), is given by the equation

ds2 = ‖v	(v + dv)‖2 = Edx2

1 + 2Fdx1dx2 + Gdx2

2 (17)

where, if we use the notation r2 = x2
1
+ x2

2

E = s2
s2 − x2

2

(s2 − r2)2
, F = s2

x1x2

(s2 − r2)2
, G = s2

s2 − x2
1

(s2 − r2)2
· (18)

The triple (g11, g12, g22) = (E, F, G) along with g21 = g12 is known in differ-
ential geometry as the metric tensor gij [6]. It turns out to be the metric tensor
of the Beltrami-Klein disc model of hyperbolic geometry [8, p. 220]. Hence, ds2

in (17) – (18) is the well-known Riemannian line element of the Beltrami-Klein
disc model of hyperbolic geometry, linked to Einstein addition ⊕ and to Einstein
gyrodistance function (15). An extension to higher dimensions is straightforward.

Similarly, in a two dimensional Möbius gyrovector space (R2
s,⊕,⊗) the squared

gyrodistance between a point v ∈ R
2
s and an infinitesimally nearby point v+dv ∈

R
2
s , dv = (dx1, dx2), is given by the equation

ds2 = ‖v	(v + dv)‖2 = Edx2

1 + 2Fdx1dx2 + Gdx2

2 (19)

where, if we use the notation r2 = x2
1
+ x2

2
,

E =
s4

(s2 − r2)2
, F = 0, G =

s2

(s2 − r2)2
· (20)

The triple (g11, g12, g22) = (E, F, G) along with g21 = g12 turns out to be the
well-known metric tensor of the Poincaré disc model of hyperbolic geometry [8,
p. 226]. Hence, ds2 in (19) – (20) is the Riemannian line element of the Poincaré
disc model of hyperbolic geometry, linked to Möbius addition ⊕ and to Möbius
gyrodistance function (15). An extension to higher dimensions is straightforward.

We thus see that the gyroalgebra of gyrovector spaces forms the setting for Carte-
sian models of hyperbolic geometry just as the algebra of vector spaces forms the
setting for the standard Cartesian model of Euclidean geometry. In this sense one
can say that hyperbolic geometry is the gyro-counterpart of Euclidean geometry.
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5. Gyrotrigonometry

We now consider the gyrotrigonometry topic of the book. Let ABC be a hy-
perbolic triangle, called a gyrotriangle, in a gyrovector space (Rn

s ,⊕,⊗) with
vertices A, B, C ∈ R

n
s and hyperbolic angles, called gyroangles, α = ∠BAC,

β = ∠ABC and γ = ∠ACB. These gyrotriangle gyroangles are defined in the
book by the equations

cos α =
	A⊕B

‖	A⊕B‖·
	A⊕C

‖	A⊕C‖

cos β =
	B⊕A

‖	B⊕A‖·
	B⊕C

‖	B⊕C‖

cos γ =
	C⊕A

‖	C⊕A‖·
	C⊕B

‖	C⊕B‖

(21)

and sin α =
√

1 − cos2 α > 0, etc. It turns out that α + β + γ < π, as expected
in hyperbolic geometry, giving rise to the gyrotriangle defect

δ = π − (α + β + γ) . (22)

Let now ABC be a right-gyroangled gyrotriangle with γ = π/2 in an Einstein
gyrovector space (Rn

s ,⊕,⊗), and let the leg-gyrolengths of this gyrotriangle be a
and b, and its hypotenuse-gyrolength be c, that is

a = ‖C	B‖ b = ‖C	A‖ c = ‖B	A‖ . (23)

Then, the side-gyrolengths a, b, c of the right-gyroangled gyrotriangle are related
by the two hyperbolic Pythagorean identities

(a

c

)2

+

(

γbb

γcc

)2

= 1,

(

γaa

γcc

)2

+

(

b

c

)2

= 1 . (24)

Moreover, the author shows in the book that (24) and (21) are related, resulting in
the equations

cos α =
b

c
, sin α =

γaa

γcc
(25)

and
cos β =

a

c
, sin β =

γbb

γcc
(26)

which, in turn, imply the inequality α+β < π/2, as expected in gyrotrigonometry.
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In the limit s → ∞, gamma factors tend to 1. Hence, in that limit the two hy-
perbolic Pythagorean identities (24) degenerate into the familiar single Euclidean
Pythagorean identity

a2 + b2 = c2 . (27)

Furthermore, in that limit the basic gyrotrigonometric equations (25) and (26)
reduce to their Euclidean counterparts,

cos α = sin β =
b

c
, sin α = cosβ =

a

c
(28)

implying α = π/2−β, as expected in trigonometry. Accordingly, more generally,
in the limit s → ∞, gyrotrigonometry reduces to trigonometry.

It is widely believed that hyperbolic geometry does not allow a definition of hyper-
bolic triangle area which is fully analogous to Euclidean triangle area. Greenberg
states in [4, p. 321] that “It can be proved rigorously that in hyperbolic geometry
the area of a triangle cannot be calculated as half the base times the height.” Sim-
ilarly, Moise states in [9, p. 349] that “it is impossible to define an area function
[in hyperbolic geometry] which has even a minimal resemblance to the Euclidean
area function.” Accordingly, Ruoff presents an explanation in a paper entitled:
“Why Euclidean area measure fails in the noneuclidean plane” [10].

However, the gyroalgebra, gyrogeometry and gyrotrigonometry developed in the
book enable the gyrotriangle gyroarea to be defined in a way fully analogous
to the definition of the triangle area. Indeed, let ABC be a gyrotriangle in an
Einstein gyrovector space (Rn

s ,⊕,⊗) with vertices A, B, C, gyroangles α, β, γ
given by (21), gyroangular defect δ given by (22), side-gyrolengths a, b, c given by
(23), and altitude-gyrolengths ha, hb, hc. It is customary to define the hyperbolic
triangle area as Kδ, where K is a fixed positive constant. However, guided by
analogies, the author defines the gyrotriangle gyroarea slightly differently.

In this book the author defines the gyrotriangle gyroarea |ABC| of gyrotriangle
ABC in an Einstein gyrovector space by the equation

|ABC| = 2s2tan δ
2

(29)

and proves that

|ABC| =
2

1 + γa + γb + γc
γaaγha

ha

|ABC| =
2

1 + γa + γb + γc
γbbγhb

hb

|ABC| =
2

1 + γa + γb + γc
γccγhc

hc .

(30)
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In the limit when s → ∞ gamma factors tend to 1 and, accordingly, the right-
hand-side of each of the three equations in (30) tends to the Euclidean triangle
area, which is half the base times the corresponding height.

6. Gyrovectors

The author’s Cartesian models of hyperbolic geometry, regulated algebraically
by gyrovector spaces, admit gyrovectors which are fully analogous to the familiar
Euclidean vectors. Let A, B ∈ R

n
s be two points in a gyrovector space (Rn

s ,⊕,⊗).
Then v = 	A⊕B is a rooted gyrovector with tail A and head B. It has the value
	A⊕B and the magnitude ‖	A⊕B‖. To liberate rooted gyrovectors from their
roots the author defines gyrovectors to be equivalence classes of rooted gyrovec-
tors, where two gyrovectors are equivalent if they have the same value. A point
P is then identified with the gyrovector 	O⊕P , where O = 0 = (0, . . . , 0) is
the arbitrarily selected origin of the ball. In order to determine gyrovector addi-
tion in a way analogous to vector addition one needs hyperbolic parallelograms,
naturally called gyroparallelograms. On first glance it seems that the notion of the
parallelogram cannot be extended from Euclidean into hyperbolic geometry since
the latter denies parallelism. However, the task is not impossible. The author
defines in the book a gyroparallelogram as a gyroquadrilateral the two gyrodiag-
onals of which intersect at their gyromidpoints. Once the concept of the gyropar-
allelogram has been established, the definition of gyrovector addition in terms of
gyroparallelograms in full analogy with the definition of vector addition in terms
of parallelograms is straightforward. Gyrovectors are, thus, equivalence classes
that add according to the gyroparallelogram law just as vectors are equivalence
classes that add according to the parallelogram law.

Along analogies that gyrovectors share with vectors, there is a remarkable dis-
analogy:

1) Einstein velocity addition in R
n
s leads in the book to the gyroparallelogram

addition law, which is commutative, just as

2) Newton velocity addition law in R
n, which is the common vector addition,

leads to the common parallelogram addition law. However,

3) Newton velocity addition law and its resulting parallelogram addition law
are coincident while, in contrast,
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4) Einstein velocity addition law (which is noncommutative) and its resulting
gyroparallelogram addition law (which is commutative) are not coincident.

This disanalogy raises a natural question: Does nature, within the frame of Ein-
stein’s special theory of relativity, obey Einstein’s velocity addition or Einstein’s
gyroparallelogram velocity addition of relativistically admissible velocities?

To answer the question, the author presents in the book a study of the effect known
as “relativistic stellar aberration”, in which he employs the gyro-techniques of
gyrotrigonometry and gyrovectors that he developed in the book, and in which he
is guided by analogies with the familiar “classical stellar aberration”.

Fortunately, the author obtains in the book the same relativistic stellar aberration
formulas that are obtained in the literature by means of the Lorentz transforma-
tion group. Hence, if the relativistic stellar aberration formulas that are available
in the literature are experimentally valid within the frame of special relativity, then
the author’s study demonstrates that, within the frame of special relativity (where
gravitation is ignored), velocities are added according to Einstein’s gyroparal-
lelogram velocity addition law (which is commutative) rather than according to
Einstein’s 1905 velocity addition law (which is noncommutative).

It is therefore important to note that the special relativistic stellar aberration for-
mulas have not yet been verified experimentally, but the experimental evidence
might appear in the near future from the NASA’s space gyroscopes experiment,
known as GP-B [3]. In this experiment to measure the gyroscopic precession of
gyroscopes in space orbit, the special relativistic stellar aberration formulas have
been taken for granted. The expected success of GP-B, therefore, would amount
to an experimental confirmation of the validity of the special relativistic stellar
aberration formulas. Following this book, this experimental confirmation would
amount to the confirmation that within the frame of special relativity, uniformly
relativistically admissible velocities are gyrovectors that add according to Ein-
stein’s gyroparallelogram addition law.

The discovery of the commutative gyroparallelogram addition law of relativisti-
cally admissible velocities to which Einstein’s noncommutative addition law gives
rise is a major accomplishment that resolves an old problem posed by the famous
mathematician Émil Borel (1871–1956) in 1913. According to the historian of
relativity physics, Scott Walter [24, pp. 117–118], Borel considered the noncom-
mutativity of Einstein’s velocity addition as a defect, and he fixed it by proposing
a velocity addition law that involves a significant modification of Einstein’s ad-
dition. We learn from this book that in order to resolve Borel’s 1913 problem of
the noncommutativity of Einstein addition there is no need to modify Einstein’s
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special theory of relativity. Rather, there is a need to extend Einstein’s unfinished
symphony.

7. Final Remarks

The book under review is quite successful in providing evidence that the mere in-
troduction of gyrations turns groups into gyrogroups, vector spaces into gyrovec-
tor spaces, trigonometry into gyrotrigonometry and Euclidean geometry into hy-
perbolic geometry. Each gyro-structure is richer than its corresponding classical
structure, and can be studied along analogies that it shares with its corresponding
classical structure. Moreover, each gyro-structure degenerates into its correspond-
ing classical structure in the special case when all the gyrations that are involved
are trivial.

Owing to the analogies that a gyro-structure shares with its corresponding classi-
cal structure, a gyrovector space approach to hyperbolic geometry emerges in this
book in a way fully analogous to the common vector space approach to Euclid-
ean geometry [5]. The book is, indeed, accessible to anyone who is familiar
with the common vector space approach to Euclidean geometry. Readers who
enjoy reading this book are likely to enjoy reading the other books of the au-
thor [15, 17, 18, 20, 21] about gyroalgebra, gyrogeometry, gyrotrigonometry and
gyrophysics.

References

[1] Einstein A., Zur Elektrodynamik Bewegter Körper, Ann. Physik (Leipzig)
17 (1905) 891–921. We use the English translation (On the Electrodynamics
of Moving Bodies) in [2] or in [7], or in http://www.fourmilab.ch/etexts
/einstein/specrel/www/.

[2] Einstein A., Einstein’s Miraculous Mears: Five Papers that Changed the
Face of Physics, Princeton, Princeton, NJ, 1998, Edited and introduced by
J. Stachel. Includes bibliographical references. Einstein’s dissertation on the
determination of molecular dimensions – Einstein on Brownian motion –
Einstein on the theory of relativity – Einstein’s early work on the quantum
hypothesis. A new English translation of Einstein’s 1905 paper on pp. 123–
160.



Book Review 105

[3] Everitt F., Fairbank W. and Schiff L., Theoretical Background and Present
Status of the Stanford Relativity–Gyroscope Experiment, Switzerland, 1969,
In: The Significance of Space Research for Fundamental Physics, Proceed-
ings of the Colloquium of the European Space Research Organization at
Interlaken, September 4, 1969. For current status see the project website at
URL: http://einstein.stanford.edu.

[4] Greenberg M., Euclidean and Non-Euclidean Geometries: Development
and History, third edition, W.H. Freeman, New York, 1993.

[5] Hausner M., A Vector Space Approach to Geometry, Dover Publ. Inc., Mi-
neola, NY, 1998, Reprint of the 1965 original.

[6] Kreyszig E., Differential Geometry, Dover Publ. Inc., New York, 1991,
Reprint of the 1963 edition.

[7] Lorentz H., Einstein A., Minkowski H. and Weyl H., The Principle of Rela-
tivity, Dover Publ. Inc., New York, undated, with notes by A. Sommerfeld.
Translated by W. Perrett and G. B. Jeffery, A Collection of Original Memoirs
on the Special and General Theory of Relativity.

[8] McCleary J., Geometry From a Differentiable Viewpoint, Cambridge Uni-
versity Press, Cambridge, 1994.

[9] Moise E., Elementary Geometry From an Advanced Standpoint, second edi-
tion, Addison-Wesley, Reading, 1974.

[10] Ruoff D., Why Euclidean Area Measure Fails in the Noneuclidean Plane,
Math. Mag. 78 (2005) 137–139.

[11] Ungar A., Thomas Rotation and the Parametrization of the Lorentz Trans-
formation Group, Found. Phys. Lett. 1 (1988) 57–89.

[12] Ungar A., Quasidirect Product Groups and the Lorentz Transformation
Group, In: Constantin Carathéodory: An International Tribute, vols. I & II,
Th. M. Rassias (Ed), World Scientific, Teaneck, NJ, 1991, pp. 1378–1392.

[13] Ungar A., Gyrovector Spaces in the Service of Hyperbolic Geometry, In:
Mathematical Analysis and Applications, Th. M. Rassias (Ed), Hadronic
Press, Palm Harbor, FL, 2000, pp. 305–360.

[14] Ungar A., Möbius Transformations of the Ball, Ahlfors’ Rotation and Gy-
rovector Spaces, In: Nonlinear Analysis in Geometry and Topology, Th. M.
Rassias (Ed), Hadronic Press, Palm Harbor, FL, 2000, pp. 241–287.

[15] Ungar A., Beyond the Einstein Addition Law and its Gyroscopic Thomas
Precession: The Theory of Gyrogroups and Gyrovector Spaces, Fundamen-
tal Theories of Physics vol. 117, Kluwer, Dordrecht, 2001.



106 Book Review

[16] Ungar A., On the Appeal to a Pre-established Harmony Between Pure Math-
ematics and Relativity Physics, Found. Phys. Lett. 16 (2003) 1–23.

[17] Ungar A., Analytic Hyperbolic Geometry: Mathematical Foundations and
Applications, World Scientific, Hackensack, NJ, 2005.

[18] Ungar A., Analytic Hyperbolic Geometry and Albert Einstein’s Special The-
ory of Relativity, World Scientific, Hackensack, NJ, 2008.

[19] Ungar A., From Möbius to Gyrogroups, Amer. Math. Monthly 115 (2008)
138–144.

[20] Ungar A., Barycentric Calculus in Euclidean and Hyperbolic Geometry: A
Comparative Introduction, World Scientific, Hackensack, NJ, 2010.

[21] Ungar A., Hyperbolic Triangle Centers: The Special Relativistic Approach,
Springer, New York, 2010.
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