

THE GAUSS MAP OF MINIMAL GRAPHS IN THE HEISENBERG GROUP

CHRISTIAM FIGUEROA

Communicated by Abraham A. Ungar

Abstract. In this paper we study some geometric properties of surfaces in the Heisenberg group, \mathcal{H}_3 . We obtain, using the Gauss map for Lie groups, a partial classification of minimal graphs in \mathcal{H}_3 .

1. Introduction

The classical Heisenberg group, \mathcal{H}_3 , is the group of 3×3 matrices of the form

$$\begin{pmatrix} 1 & r & t \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix}, \qquad r, t, s \in \mathbb{R}.$$
 (1)

This group is a two-step nilpotent (or quasi-abelian) Lie group, which is the nearest condition to be abelian. Endowed with a left invariant metric g, the isometry group of (\mathcal{H}_3, g) is four-dimensional. It is known that there is no three-dimensional Riemannian manifold with isometry group of dimension five, so (\mathcal{H}_3, g) has isometry group of the largest possible dimension for a non-constant curvature space.

In this paper we will fix a left invariant Riemannian metric in \mathcal{H}_3 and study the geometry of surfaces with special emphasis on minimal surfaces and the relationship with their Gauss map.

We have organized the paper as follows. Section 2 we present the basic geometry of the Heisenberg group, \mathcal{H}_3 including a basis for left invariant fields.

In Section 3 we study the non parametric surfaces in \mathcal{H}_3 . We calculate the coefficients of the first and second fundamental form and the Gaussian curvature of this type of surfaces.

In Section 4 we present the Gauss map for hypersurfaces of any Lie group and present a relationship between this map and the second fundamental form and give a direct proof of a non existence of umbilical surfaces in \mathcal{H}_3 .

1