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Abstract. Relativistic hyperbolic geometry is a model of the hyperbolic geometry
of Lobachevsky and Bolyai in which Einstein addition of relativistically admissible
velocities plays the role of vector addition. The adaptation of barycentric coordi-
nates for use in relativistic hyperbolic geometry results in the relativistic barycen-
tric coordinates. The latter are covariant with respect to the Lorentz transformation
group just as the former are covariant with respect to the Galilei transformation
group. Furthermore, the latter give rise to hyperbolically convex sets just as the for-
mer give rise to convex sets in Euclidean geometry. Convexity considerations are
important in non-relativistic quantum mechanics where mixed states are positive
barycentric combinations of pure states and where barycentric coordinates are in-
terpreted as probabilities. In order to set the stage for its application in the geometry
of relativistic quantum states, the notion of the relativistic barycentric coordinates
that relativistic hyperbolic geometry admits is studied.
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