JOURNAL OF

Geometry and Symmetry in Physics ISSN 1312-5192

SYMMETRIC REDUCTION AND HAMILTON-JACOBI EQUATION OF RIGID SPACECRAFT WITH A ROTOR

HONG WANG

Communicated by Jan J. Sławianowski

JGSP 32 (2013) 87-111

Abstract. In this paper, we consider the rigid spacecraft with an internal rotor as a regular point of reducible regular controlled Hamiltonian (RCH) system. In the cases of coincident and non-coincident centers of buoyancy and gravity, we give explicitly the equations of motion and Hamilton-Jacobi equations of reduced spacecraft-rotor system on the symplectic leaves by calculation in detail, which show the effect on controls in regular symplectic reduction and Hamilton-Jacobi theory respectively.

Contents

2	The	D'-'1 C	
		The Rigid Spacecraft with a Rotor	
	2.1	The Spacecraft-Rotor System with Coincident Centers	91
	2.2	The Spacecraft-Rotor System with Non-Coincident Centers	92
3	Symmetric Reduction of the Rigid Spacecraft with a Rotor		93
	3.1	Symmetric Reduction of Spacecraft-Rotor System with Coincident Centers	93
	3.2	Symmetric Reduction of Spacecraft-Rotor System with Non-Coincident Centers	97
4	Hamilton-Jacobi Equation of the Rigid Spacecraft with a Rotor		101
	4.1	H-J Equation of Spacecraft-Rotor System with Coincident Centers	102
	4.2	H-J Equation of Spacecraft-Rotor System with Non-Coincident Centers .	105
5	Con	clusions	108

1. Introduction

It is well-known that the theory of controlled mechanical systems is an important subject in the recent years. It gathers together some separate areas of research such

87