JOURNAL OF

Geometry and Symmetry in Physics ISSN 1312-5192

LOCALITY OF THE CONSERVATION LAWS FOR THE SOLITON EQUATIONS RELATED TO CAUDREY-BEALS-COIFMAN SYSTEM

ALEXANDAR YANOVSKI

Communicated by Metin Gürses

JGSP 33 (2014) 91-107

Abstract. We consider the hierarchies of Nonlinear Evolution Equations related to auxiliary problem of Caudrey-Beals-Coifman type. We give a proof that the conservation laws for these equations have local densities based on the theory of the generating operators related to the Caudrey-Beals-Coifman linear problem.

Contents

1	Introduction	91
2	2 Fundamental Solutions to the CBC System	94
3	3 Generating Operator Approach to the Soliton Equations Associated with CBC System	h the 95
	3.1 Expansions Over the Adjoint Solutions for the CBC System	95
4	The NLEEs Related to the CBC System	97
	4.1 General Description	97
	4.2 Conservation laws, Hamiltonian structures	98
	4.2.1. Properties of the Adjoint Solutions $h_{\nu,H}$	98
	4.2.2. Conservation Laws. The Generating Functions	100
5	Locality of the Hierarchy of NLEEs Related to the CBC System and Their	
	Conservation Laws	102
	References	106

1. Introduction

This article is about the theory of the so-called soliton equations (completely integrable equations). Their characteristic property is that they can be cast into the so called Lax form, or zero curvature form, that is, as compatibility condition (Lax