

ISSN 1312-5192

ESSENTIAL NONLINEARITY IN FIELD THEORY AND CONTIN-UUM MECHANICS. SECOND- AND FIRST-ORDER GENERALLY-COVARIANT MODELS

EWA ELIZA ROŻKO AND JAN JERZY SŁAWIANOWSKI

Communicated by Jean-Francois Ganghoffer

Abstract. Discussed is the problem of the mutual relationship of differentially first-order and second-order field theories and quantum-mechanical concepts. We show that unlike the real history of physics, the theories with algebraically second-order Lagrangians are primary, and in any case more adequate. It is shown that in principle, the primary Schrödinger idea about Lagrangians which are quadratic in derivatives, and leading to second-order differential equations, is not only acceptable, but just it opens some new perspective in field theory. This has to do with using the Lorentz-conformal or rather its universal covering SU(2, 2) as a gauge group. This has also some influence on the theory of defects in continua.

Contents

1	Summary	51
2	Heuristics of the $\mathrm{U}(1)$ Gauge Group	52
3	${ m SU}(2,2)$ as a Gauge Group	54
4	Second-Order $\mathrm{SU}(2,2)$ Gauge Theory	62
5	The $SL(2, C)$ - Correspondence in the Second-Order $SU(2, 2)$ Theory	66
6	First-Order $\mathrm{SU}(2,2)$ Field Theory	71
	References	74

1. Summary

It is well-known that fundamental laws of motion of discrete or continuous systems of material points are given by the second-order differential equations, in any

doi: 10.7546/jgsp-34-2014-51-76