

JOURNAL OF

Geometry and Symmetry in Physics

ISSN 1312-5192

ON THE ISOTHERMAL GEOMETRY OF CORRUGATED GRAPHENE SHEETS

ANDRZEJ TRZĘSOWSKI

Communicated by Zhanchun Tu

Abstract. Variational geometries describing corrugated graphene sheets are proposed. The isothermal thermomechanical properties of these sheets are described by a two-dimensional Weyl space. The equation that couples the Weyl geometry with isothermal distributions of the temperature of graphene sheets, is formulated. This material space is observed in a three-dimensional orthogonal configurational point space as regular surfaces which are endowed with a thermal state vector field fulfilling the isothermal thermal state equation. It enables to introduce a non-topological dimensionless thermal shape parameter of non-developable graphene sheets. The properties of the congruence of lines generated by the thermal state vector field are discussed.

Contents

1	Introduction	1
2	Weyl Material Space of Graphene Sheets	8
3	Orthogonal Configurational Spaces	13
4	Geometry of Embedded Graphene Sheets	20
5	Congruence of Lines Generated by the Thermal State Vector Field	27
6	Conclusions and Remarks	31
	Appendix A - Affine Spaces and Mappings	33
	Appendix B - Differential Geometry of Affine Spaces	37
	Appendix C - Differential Operators	39
	References	41
doi: 10.7546/jgsp-36-2014-1-45		1