

ISOMORPHISM THEOREMS FOR GYROGROUPS AND L-SUBGYROGROUPS

TEERAPONG SUKSUMRAN AND KENG WIBOONTON

Communicated by Abraham A. Ungar

Abstract. We extend well-known results in group theory to gyrogroups, especially the isomorphism theorems. We prove that an arbitrary gyrogroup G induces the gyrogroup structure on the symmetric group of G so that Cayley's Theorem is obtained. Introducing the notion of L-subgyrogroups, we show that an L-subgyrogroup partitions G into left cosets. Consequently, if H is an L-subgyrogroup of a finite gyrogroup G, then the order of H divides the order of G.

MSC: 20N05, 18A32, 20A05, 20B30 *Keywords*: gyrogroup, L-subgyrogroup, Cayley's Theorem, Lagrange's Theorem, isomorphism theorem, Bol loop, A_{ℓ} -loop

Contents

1	Introduction	67
2	Basic Properties of Gyrogroups	69
3	Cayley's Theorem	72
4	L-Subgyrogroups	74
5	Isomorphism Theorems	78
Re	References	

1. Introduction

Let c be a positive constant representing the speed of light in vacuum and let \mathbb{R}^3_c denote the c-ball of relativistically admissible velocities, $\mathbb{R}^3_c = \{\mathbf{v} \in \mathbb{R}^3; \|\mathbf{v}\| < c\}$. In [13], Einstein velocity addition \oplus_E in the c-ball is given by the equation

$$\mathbf{u} \oplus_E \mathbf{v} = \frac{1}{1 + \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{c^2}} \left\{ \mathbf{u} + \frac{1}{\gamma_{\mathbf{u}}} \mathbf{v} + \frac{1}{c^2} \frac{\gamma_{\mathbf{u}}}{1 + \gamma_{\mathbf{u}}} \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{u} \right\}$$

doi: 10.7546/jgsp-37-2015-67-83