

JOURNAL OF Geometry and Symmetry in Physics ISSN 1312-5192

ALGEBRAS GENERATED BY ODD DERIVATIONS

CLAUDE ROGER

Communicated by Guowu Meng

Abstract. Given an associative supercommutative algebra equipped with an odd derivation, one considers the space of vector fields it defines, and show, under suitable hypothesis, they form a Jordan superalgebra; in contrast with the Lie superalgebras of Virasoro type constructed from even derivations. Relations with Anti Lie algebras studied by Ovsienko and collaborators are then shown.

MSC: 17B60,17B65,17B68, 81Q60 *Keywords*: Superalgebras, supergeometry

Let \mathcal{A} be an $\mathbb{Z}/2\mathbb{Z}$ -graded, associative and graded commutative algebra. The degree of an element $a \in \mathcal{A}$ will be denoted by |a|, the same for the degree of an application; we shall consider derivations of \mathcal{A} . A map $\delta : \mathcal{A} \to \mathcal{A}$ is a derivation if for any $a, b \in \mathcal{A}$, one has

$$\delta(ab) = \delta(a)b + (-1)^{|a||\delta|}a\delta(b).$$

It is well-known that the space of derivations of a commutative associative algebra is a Lie algebra through commutator, a generic example being derivations of the algebra of smooth functions on a differentiable manifold, isomorphic to the Lie algebra of tangent vector fields through Lie derivative. This fact generalizes to the $\mathbb{Z}/2\mathbb{Z}$ -graded case: graded bracket of derivations induces a Lie superalgebra structure, as can easily be deduced from the formula

$$[\delta_1, \delta_2] = \delta_1 \circ \delta_2 - (-1)^{|\delta_1||\delta_2|} \delta_2 \circ \delta_1.$$

For basic definitions and results about superalgebra, see [2, vol.1, Part 1].

1. About Virasorisation

We shall generalize here the construction of Virasoro algebra from the commutative and associative algebra of smooth functions on the unit circle with its natural derivative (cf. [4] for basic results about Virasoro algebra). Let δ be a derivation of \mathcal{A} , and $a \in \mathcal{A}$, then $a\delta$ defined as $[a\delta](b) = a\delta(b)$, is a derivation of degree