

JOURNAL OF Geometry and Symmetry in Physics ISSN 1312-5192

INVERSION OF DOUBLE-COVERING MAP $\mathrm{SPIN}(N) \to \mathrm{SO}(N,\mathbb{R})$ FOR $N \leq 6$

MIECZYSLAW K. DABKOWSKI, EMILY HERZIG AND VISWANATH RAMAKRISHNA

Communicated by Ivaïlo M. Mladenov

Abstract. This work provides an algorithmic procedure for finding the pair of elements in the spin group which map to a given matrix in the special orthogonal group of order five or six. This is achieved by first solving the problem when the special orthogonal matrix is a Givens rotation, and then exploiting the fact that the covering maps are group homomorphisms and that any special orthogonal matrix can be explicitly decomposed into a product of Givens rotations. For this purpose systems of quadratic equations in several variables have to be solved symbolically. The resulting solution display a transparent dependency on the entries of the Givens matrices.

MSC: 15A66, 15A16 *Keywords*: Double cover, Givens rotation, quadratic systems, special orthogonal, spin group

Contents

1	Introduction	16
2	Inversion of the Double Covering Map from $\mathrm{SO}(5,\mathbb{R})$ to $\mathrm{Sp}(4)$	18
3	Inversion of the Double Covering Map from $\mathrm{SO}(6,\mathbb{R})$ to $\mathrm{SU}(4)$	25
4	Illustrative Examples	30
5	Conclusions	39
6	Appendix 1: Proof of Theorem 6	40
7	Appendix 2: System of Equations (2) and Proof of Theorem 10	43
References		49
doi: 10.7546/jgsp-42-2016-15-51		15