

JOURNAL OF Geometry and Symmetry in Physics ISSN 1312-5192

KÄHLER DYNAMICS FOR THE UNIVERSAL MULTI-ROBOT FLEET

VLADIMIR G. IVANCEVIC

Communicated by Ivaïlo M. Mladenov

Abstract. A general model is formulated for a universal fleet of all unmanned vehicles, including Aerial Vehicles (UAVs), Ground Vehicles (UGVs), Sea Vehicles (USVs) and Underwater Vehicles (UUVs), as a geometric Kähler dynamics and control system. Based on the Newton-Euler dynamics of each vehicle, a control system for the universal autonomous fleet is designed as a combined Lagrangian and Hamiltonian form. The associated continuous system representing a very large universal fleet is given in Appendix in the form of the Kähler-Ricci flow.

MSC: 32Q15, 37J99, 68T40

Keywords: Aerial, autonomous multi-robot operation, Kähler dynamics, sea and underwater vehicles, unmanned ground

Contents

1	Intr	oduction	68
2	Lagrangian and Hamiltonian Fleets		70
	2.1	Individual Unmanned Vehicles: Basic Newton-Euler Mechanics	70
	2.2	Lagrangian Control for the Water Fleet	72
	2.3	Hamiltonian Control for the Air Swarm	75
3	Kähler Dynamics for the Universal Fleet		76
4	Con	clusion	79
5	Арр	endix: Continuous Kähler Dynamics for a Very Large Fleet	79
Re	References		84
do	doi: 10.7546/jgsp-45-2017-67-85		