

JOURNAL OF Geometry and Symmetry in Physics ISSN 1312-5192

A NOTE ON THE CLASS OF SURFACES WITH CONSTANT SKEW CURVATURES

MAGDALENA TODA AND ALEXANDER PIGAZZINI

Communicated by John Oprea

Abstract. The goal of this paper is to analyze surfaces with constant skew curvature (CSkC), and show that the class of CSkC surfaces with non-constant principal curvatures does not contain any Bonnet surfaces.

MSC: 53A10 Keywords: Bonnet surfaces, constant skew curvature surfaces

1. Introduction and Background

A CSkC (constant skew curvature) surface represents a smooth, immersed surface in a space form, whose difference of principal curvatures $k_1 - k_2 = a$ represents a positive constant. Note that this is equivalent with $H^2 - K = c^2 = \frac{a^2}{4}$ being constant, where H is the mean curvature, and K is the Gaussian curvature of the surface. This type of surface is a particular kind of *W*-surface (a surface that is characterized by a functional relationship between its principal curvatures, as stated by Chern in [2]). On the other hand, the characterization of a CSkC surface can be made in a more specific way. Surfaces in \mathbb{R}^3 whose principal curvatures satisfy a linear relation (i.e., $k_1 = pk_2 + q$, where p and q are real numbers) are called *linear Weingarten surfaces*. This class of surfaces has many relevant physical applications. For example, the Mylar balloon can be regarded as a specific example of a linear Weingarten surface (with q = 0) as it was done in [5], where a variational characterization was provided for linear Weingarten surfaces that generalize the Mylar balloon, in terms of beta functions.

Therefore, we may regard a CSkC surface as a linear Weingarten surface with p = 1 and q non-zero, by excluding umbilic points.

Separately, we will recall the notion of Bonnet surface. The notations used in this article are the standard ones from most books on surface theory, such as [6], for example. Let us consider an oriented surface \mathbb{M}^2 in \mathbb{R}^3 of Riemannian metric g, characterized by a smooth mean curvature H. One of the famous questions that