

Geometry and Symmetry in Physics

ISSN 1312-5192

COMPOSITION ALGEBRAS, EXCEPTIONAL JORDAN ALGEBRA AND RELATED GROUPS *

IVAN TODOROV AND SVETLA DRENSKA

Communicated by Ivaïlo M. Mladenov

Abstract. Normed division rings are reviewed in the more general framework of composition algebras that include the split (indefinite metric) case. The Jordan - von Neumann - Wigner classification of finite dimensional Jordan algebras is outlined with special attention to the 27 dimensional exceptional Jordan algebra \mathfrak{J} . The automorphism group F_4 of \mathfrak{J} and its maximal Borel-de Siebenthal subgroups $\frac{SU(3)\times SU(3)}{\mathbb{Z}_3}$ and Spin(9) are studied in some detail with an eye to possible applications to the fundamental fermions in the Standard Model of particle physics.

MSC: 20G41, 17C40, 117A75, 7C60, 17A35, 22D20, 22E15, 22E20, 22E46 *Keywords*: Exceptional Lie groups, Jordan algebra, octonions, standard model

Contents

1	Introduction Composition and Clifford Algebras		60
2			
	2.1	Normed Alternative Algebras	60
	2.2	Relation to Clifford Algebras and Classification	63
	2.3	Historical Note	66
3	Octonions. Isometries and Automorphisms		67
	3.1	Eight Dimensional Alternative Algebras	67
	3.2	Isometry Group of the (Split) Octonions. Triality	68
	3.3	Automorphism Group and Derivations of Octonions	69
	3.4	Roots and Weights of $\mathfrak{g}_{2(2)}\subset\mathfrak{so}(4,4)$ $\ \ldots$	71
4	Jordan Algebras and Related Groups		73
	4.1	Classification of Finite Dimensional Jordan Algebras	73
	4.2	Automorphism Groups of the Exceptional Jordan Algebras $\mathcal{H}_3(\mathbb{O}_{(s)})$ and their Maximal Subgroups	76
	4.3	The Jordan Subalgebra $JSpin_9$ of $\mathcal{H}_3(\mathbb{O})$ and its Automorphism Group $Spin(9) \subset F_4 \ldots \ldots \ldots \ldots \ldots \ldots$	80

^{*}Dedicated to the memory of Professor Vasil V. Tsanov 1948-2017. doi: 10.7546/jgsp-46-2017-59-93