

JOURNAL OF Geometry and Symmetry in Physics ISSN 1312-5192

## INDEFINITE EISENSTEIN LATTICES: A MODERN BALL-RENDEVOUS WITH POINCARÉ, PICARD, HECKE, SHIMURA, MUMFORD, DELIGNE AND HIRZEBRUCH\*

## ROLF-PETER HOLZAPFEL

Communicated by Ivaïlo M. Mladenov

**Abstract.** In [21] we have counted indefinite metrics (two-dimensional, integrally defined, over Gauss numbers) with a fixed norm (discriminant). We would like to call them also *indefinite class numbers*. In this article we change from Gauss to Eisenstein numbers. We have to work on the complex two-dimensional unit ball, an Eisenstein lattice on it and the quotient surface. It turns out that the compactified quotient is the complex plane  $\mathbb{P}^2$ . In the first part we present a new proof of this fact. In the second part we construct explicitly a Heegner series with the help of Legendre-symbol coefficients. They can be interpreted as "indefinite class numbers" we look for. Geometrically they appear also as number of plane curves with (normed) Eisenstein disc uniformization.

*MSC*:11F11, 11F30, 14C20, 14E20, 14G35, 14H45, 20H05, 30F45 *Keywords*: Eisenstein series, Fourier coefficients of modular forms, intersection numbers of curves, modular forms, Picard modular surfaces, Shimura curves, unit ball

## Contents

| 1                                | Preface<br>The Eisenstein Congruence Surface |                        |                                                        | 2<br>5 |
|----------------------------------|----------------------------------------------|------------------------|--------------------------------------------------------|--------|
| 2                                |                                              |                        |                                                        |        |
|                                  | 2.1                                          | Introdu                | uction                                                 | 5      |
|                                  |                                              | 2.1.1.                 | Preview: Picard Modular Surfaces of Eisenstein Numbers | 8      |
|                                  | 2.2                                          | Unimo                  | dular Sublattices                                      | 10     |
| 2.3 C                            |                                              | Counti                 | Counting Special Points                                |        |
|                                  |                                              | 2.3.1.                 | Cusp Points on $\widehat{\Gamma \setminus \mathbb{B}}$ | 12     |
|                                  |                                              | 2.3.2.                 | $\mathbb{B}$ -points of Maximal Negative Norm $-1$     | 13     |
|                                  |                                              | 2.3.3.                 | Norms of K-Discs and Their Quotient Curves             | 14     |
|                                  |                                              | 2.3.4.                 | Stabilizing Subgroups                                  | 15     |
| 2.4 All Elements of Finite Order |                                              | ements of Finite Order | 17                                                     |        |

<sup>\*</sup>Dedicated to the memory of Professor Vasil V. Tsanov 1948-2017.