

JOURNAL OF Geometry and Symmetry in Physics

ISSN 1312-5192

DEFORMATIONS OF SYMPLECTIC STRUCTURES BY MOMENT MAPS

TOMOYA NAKAMURA

Communicated by Armen Sergeev

Abstract. We study deformations of symplectic structures on a smooth manifold M via the quasi-Poisson theory. We can deform a given symplectic structure ω with a Hamiltonian G-action to a new symplectic structure ω^t parametrized by some element t in $\Lambda^2 \mathfrak{g}$. We can obtain concrete examples for the deformations of symplectic structures on the complex projective space and the complex Grassmannian. Moreover applying the deformation method to any symplectic toric manifold, we show that manifolds before and after deformations are isomorphic as a symplectic toric manifold.

MSC: 53D05, 53D17, 53D20 *Keywords*: Deformation-equivalent, Poisson, quasi-Poisson, symplectic

Contents

1	Introduction	63
2	Moment Maps for Quasi-Poisson Actions on Quasi-Poisson Manifolds	66
3	Main Result	72
4	Examples on \mathbb{CP}^n and $\operatorname{Gr}(r, \mathbb{C}^n)$	76
5	Symplectic Toric Manifolds	81
References		83

1. Introduction

In the context of symplectic geometry, deformation-equivalence assumptions and conditions are often appeared, for example, in the statement of Moser's theorem [9], Donaldson's four-six conjecture [10] and so on. However, it seems that a

doi: 10.7546/jgsp-47-2018-63-84