

JOURNAL OF

Geometry and Symmetry in Physics

ISSN 1312-5192

THE SOLUTION TO THE THREE-BODY PROBLEM AND SOME APPLICATIONS

RAMON GONZÁLEZ CALVET

Communicated by Charles-Michel Marle

Abstract. Here we provide and explain the coordinate transformation according to which every weighted quadratic form of the absolute Cartesian coordinates or velocities of three particles is separable into quadratic terms of the relative and centre-of-mass coordinates or velocities. This solution is applied to define a new set of weighted colour coordinates YJK in the colour space, and also to solve the dynamical system Sun-Earth-Moon. The weighted Laplacian and hence the quantum Hamiltonian operator for a system of three particles are also given in relative coordinates, and applied to calculate the vibrational energy levels of carbon dioxide and the electronic energy of the ground state of the hydrogen-molecule-ion and two-electron atomic systems like the helium atom.

MSC: 70F07, 81Q05

Keywords: Carbon dioxide, colour space, Hamiltonian, helium atom, hydrogen molecule-ion, lunar theory, three-body problem

Contents

1	Intr	oduction	2
2	Ante	ecedents	3
3	Аро	llonius' Lost Theorem	4
4	Арр	lication to Colour Image Processing	5
5	Application to Classical Mechanics		8
	5.1	The Dynamic System Sun-Earth-Moon	11
		5.1.1. Zero-Order Approximation	12
		5.1.2. First-Order Approximation	16
6	Application to Quantum Mechanics		33
	6.1	Energy Levels of the Linear Vibrations of CO ₂	35
	6.2	Electronic Energy of the Hydrogen Molecule-Ion	39
		6.2.1. LCAO Computations	42
do	i: 10.7	546/jgsp-49-2018-1-61	1