

Geometry and Symmetry in Physics

ISSN 1312-5192

GEOMETRY OF TWISTED SASAKI METRIC

LAKEHAL BELARBI AND HICHEM ELHENDI

Communicated by Robert Low

Abstract. Let (M,g) be a n-dimensional smooth Riemannian manifold. In the present paper, we introduce a new class of natural metrics denoted by $G^{f,h}$ and called twisted Sasaki matric on the tangent bundle TM. We studied the geometry of $(TM,G^{f,h})$ by giving a relationships of the curvatures, Einstein structure, scalar and sectional curvatures between $(TM,G^{f,h})$ and (M,g).

MSC: 58A03, 58A05.

Keywords: Einstein structure, natural metrics, twisted Sasaki metric

Contents

1	Prel	liminaries	1
2	Twisted Sasaki Metric		4
	2.1	Levi-Civita Connection of $G^{f,h}$	4
3	Curvatures of Twisted Sasaki Metric		6
	3.1	Curvature Properties	9
4	Einstein Structure		10
	4.1	Sectional Curvature	13
	4.2	Scalar Curvature	15
References			17

1. Preliminaries

We recall some basic facts about the geometry of the tangent bundle. In the present paper, we denote by $\Gamma(TM)$ the space of all vector fields of a Riemannian manifold (M,g). Let (M,g) be an n-dimensional Riemannian manifold and (TM,π,M)

doi: 10.7546/jgsp-53-2019-1-19