

JOURNAL OF Geometry and Symmetry in Physics

ISSN 1312-5192

CHARACTERIZATION AND COMPUTATION OF MATRICES OF MAXIMAL TRACE OVER ROTATIONS

JAVIER BERNAL AND JIM LAWRENCE

Communicated by Ivailo M. Mladenov

Abstract. Given a $d \times d$ matrix M, it is well known that finding a $d \times d$ rotation matrix U that maximizes the trace of UM, i.e., that makes UM a matrix of maximal trace over rotation matrices, can be achieved with a method based on the computation of the singular value decomposition (SVD) of M. We characterize $d \times d$ matrices of maximal trace over rotation matrices in terms of their eigenvalues, and for d = 2, 3, we identify alternative ways, other than the SVD, of computing U so that UM is of maximal trace over rotation matrices.

MSC: 15A18, 15A42, 65H17, 65K99, 93B60 *Keywords*: Eigenvalues, orthogonal, Procrustes, rotation, SVD, trace, Wahba

Contents

1	Introduction	22
2	Reformulation of Problems as Maximizations of the Trace of Matrices Over Rotations	24
3	Characterization of Matrices of Maximal Trace Over Rotations	25
4	The Two-Dimensional Case: Computation without SVD	36
5	The Three-Dimensional Case: Computation without SVD	40
6	The Three-Dimensional Case Revisited	46
References		52
doi	doi: 10.7546/jgsp-53-2019-21-53	