

JOURNAL OF

Geometry and Symmetry in Physics ISSN 1312-5192

ABOUT THE SYMMETRY OF GENERAL RELATIVITY

SERHII SAMOKHVALOV

Communicated by Mayeul Arminjon

Abstract. Generalized deformed gauge groups are used for investigation of symmetry of general relativity (GR). GR is formulated in generalized reference frames, which are represented by affine frames. The general principle of relativity is extended to the requirement of invariance of the theory with respect to the group GL^g of local linear transformations of affine frames. GR is interpreted as the gauge theory of the gauge group of translations T_M^g . The groups GL^g and T_M^g are united into the group S_M^g , which is their semidirect product and is the complete symmetry group of GR. By GL^g -gauge fixing one can obtain: Einstein gravity, GR in an orthogonal frame or teleparallel equivalent of GR, dilaton gravity, unimodular gravity, etc.

MSC: 70S10, 83C22, 83C40 *Keywords*: Affine frames, conservation law, general relativity, generalized deformed gauge groups, quasilocality

Contents

1	Intr	oduction	76
2	Quasilocality of Gauge Charges		78
3	Gen	eral Relativity in an Affine Frame	81
	3.1	Field variables and Lagrangian of GRAF	81
	3.2	Palatini equation	83
	3.3	Field equations	84
4	Consequences of Gauge Invariance of GRAF		86
	4.1	Generalized principle of relativity	87
	4.2	Gauge translational invariance	89
	4.3	Complete symmetry of the general relativity	92