

JOURNAL OF

Geometry and Symmetry in Physics

ISSN 1312-5192

EXAMPLES OF GIBBS STATES OF MECHANICAL SYSTEMS WITH SYMMETRIES

CHARLES-MICHEL MARLE

Communicated by Ivaïlo M. Mladenov

Abstract. In a previous paper, the notion of Gibbs state for the Hamiltonian action of a Lie group on a symplectic manifold was given, together with its applications in Statistical Mechanics, and the works in this field of the French mathematician and physicist Jean-Marie Souriau were presented. Using an adaptation of the cross product for pseudo-Euclidean three-dimensional vector spaces, we present several examples of such Gibbs states, together with the associated thermodynamic functions, for various two-dimensional symplectic manifolds, including the pseudo-spheres, the Poincaré disk and the Poincaré half-plane.

MSC: 53D05, 53D20, 53D17, 82B03, 82B30

Keywords: Gibbs states, Hamiltonian systems, Liouville measure, Hodge operator, Möbius transformations, moment maps, Poincaré disk, Poincaré half-plane, symplectic and Poisson manifolds, thermodynamic equilibrium

Contents

1 Introduction		oduction	56
2	Three-Dimensional Real Oriented Vector Spaces with a Scalar Product		56
	2.1	Admissible Bases and Symmetry Groups	56
	2.2	A Remarkable Lie Algebras Isomorphism	57
	2.3	Expression of the Map \mathbf{j} in Terms of the Hodge Star Operator	59
	2.4	Metric, Lie Algebra and Lie-Poisson Structures of F	60
	2.5	Coadjoint Orbits of G as Submanifolds of \mathbf{F}	61
3	Gibbs States on Some Two-Dimensional Symplectic Manifolds		62
	3.1	Gibbs States on Two-Dimensional Spheres	63
	3.2	Gibbs States on Pseudo-Spheres and Other ${ m SO}(2,1)$ Coadjoint Orbits	64
	3.3	Gibbs States on the Poincaré Disk	66
	3.4	Gibbs States on the Poincaré Half-Plane	71
	3.5	No Gibbs State Can Exist on a Two-Dimensional Symplectic Vector Space	74
	3.6	Gibbs States on an Affine Euclidean and Symplectic Plane	75
4	Fina	al Comments	77
Re	References		