JOURNAL OF

Geometry and Symmetry in Physics

ISSN 1312-5192

DEFORMAION QUANTIZATION WITH SEPARATION OF VARIABLES FOR COMPLEX TWO-DIMENSIONAL LOCALLY SYMMETRIC KÄHLER MANIFOLD

TAIKA OKUDA[†] and AKIFUMI SAKO[‡]

Communicated by Akira Yoshioka

A construction methods of noncommutative locally symmetric Kähler manifolds via a deformation quantization with separation of variables was proposed by Sako-Suzuki-Umetsu and Hara-Sako. This construction gives the recurrence relations to determine the star product. These recurrence relations were solved for the case of the arbitrary one-dimensional ones, N-dimensional complex space, complex projective space and complex hyperbolic space. For any two-dimensional case, authors found the solution of the recurrence relations. In this paper, we review the solution and make the star product for two-dimensional complex projective space as a concrete example of this solution.

MSC: 53D55, 46L87, 81R60, 32Q15

Keywords: Noncommutative differential geometry, mathematical physics, deformation quantization, Kähler geometry, locally symmetric space

1. Introduction

Deformation quantization is one of the quantization methods to construct noncommutative differentiable manifolds, proposed by Bayen *et al* [2]. A deformation quantization for a Poisson manifold M is defined by the pair of the ring of formal power series over $C^{\infty}(M)$ and a star product * on $C^{\infty}(M)[[\hbar]]$. Here, $C^{\infty}(M)[[\hbar]] := \{f; f = \sum_k f_k \hbar^k, f_k \in C^{\infty}(M)\}$, where \hbar is a formal parameter. A star product * is a product denoted by

$$f \ast g = \sum_{k=0}^{\infty} C_k(f,g) \hbar^k$$

for any $f, g \in C^{\infty}(M)$, which satisfies associativity, $C_k(\cdot, \cdot)$ is bi-differential operators, $C_0(f,g) = fg$, $C_1(f,g) - C_1(g,f) = \{f,g\}$, where $\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ is a Poisson bracket, and f * 1 = 1 * f = f. The construction methods of the deformation quantizations for symplectic manifolds by de doi: 10.7546/jgsp-64-2022-39-49