JOURNAL OF

Geometry and Symmetry in Physics

ISSN 1312-5192

A SURVEY OF DELAUNAY SURFACES WITH APPLICATIONS IN CAPILLARY SURFACES

BINURI PERERA, THANUJA PARAGODA AND DAYAL DHARMASENA

Communicated by Vassil M. Vassilev

In this paper we survey Delaunay surfaces in \mathbb{R}^3 spanning two coaxial circles which appear as capillary surfaces supported on different solid supports in the absence of gravity. We classify these surfaces based on contact angles and the geometry of the support. Numerical solutions of the Euler Lagrange equation are provided using numerical methods.

MSC: 53A10, 65L06 Keywords: Capillary surfaces, nodoids, unduloids

Contents

1	Intr	oduction	51
2	Cap	illary Surfaces	53
3	Capillary Surfaces Formed by Liquid Bridges Between Two Horizontal Parallel Planes		55
	3.1	Capillary Surfaces Formed by a Liquid Drop Wetting an Annular Region	58
	3.2	Capillary Surfaces Formed by a Liquid Drop on Inside or Outside Surface of a Cylinder	60
	3.3	Capillary Surfaces Supported on a Truncated Right Circular Cylinder	62
4	Conclusion		63
Re	References		

1. Introduction

Studies of the Constant Mean Curvature (CMC) surfaces in \mathbb{R}^3 are a central topic in classical differential geometry with a long history. For instance, these surfaces are the local solutions of the isoperimetric problem of finding area minimizing doi:10.7546/jgsp-64-2022-51-65 51