Geometry and Symmetry in Physics

ISSN 1312-5192

INTEGRABILITY IN A NONLINEAR MODEL OF SWING OSCILLATORY MOTION

SVETOSLAV G. NIKOLOV 1,2 and VASSIL M. VASSILEV 1

Presented by Vassil M. Vassilev

Nonlinear dynamical systems can be studied in many different directions: i) finding integrable cases and their analytical solutions, ii) investigating the algebraic nature of the integrability, iii) topological analysis of integrable systems, and so on. The aim of the present paper is to find integrable cases of a dynamical system describing the rider and the swing pumped (from the seated position) as a compound pendulum. As a result of our analytical calculations, we can conclude that this system has two integrable cases when: 1) the dumbbell lengths and pointmasses meet a special condition, 2) the gravitational force is neglected.

MSC: 34A05, 34A34, 34C15, 37C79

Keywords: Integrability, Lagrangian and Hamiltonian equations of motion, nonlinear dynamical systems, swing oscillatory motion

Contents

1	Introduction	94
2	Lagrangian Formulation	98
3	Hamiltonian Formulation	99
4	Integrable Cases	100
	4.1 First Integrable Case $N = 0, g \neq 0 \dots \dots$	100
	4.2 Second Integrable Case $N \neq 0, g = 0$	102
5	Concluding Remarks	104
A	Expressions for the Kinetic and Potential Energies	105
Re	eferences	106
do	i: 10.7546/jgsp-65-2023-93-108	93