SPECTRAL GEOMETRY OF UNDULOIDS

BILL B. DAILY

Communicated by John Oprea

This paper examines the eigenvalues and eigenfunctions of the Laplace operator associated with a set of mathematically defined surfaces which can be produced experimentally by attaching two equally sized rings to opposite poles of a soap bubble and separating the rings. The shapes produced are called unduloids. These calculations show 1) for a range of ring sizes, as a function of ring separation, the first indexed eigenvalue has a minimum, pointing to an “optimum” shape, and 2) given the eigenfunctions in the form of their differential equations and a preference for symmetry, the underlying unduloid geometry may be deduced.

MSC: 35R30, 53A05, 53A10, 53C42, 58J50
Keywords: Inverse problem, minimal surfaces, soap bubbles, spectral geometry, unduloid

Contents

1 Introduction 48
2 Surface Geometry 50
3 Derivation of Arc Length Parameterized Eigenfunctions 52
 3.1 Partial Differential Equation 52
 3.2 Separation of Variables 52
4 How Eigenfunctions Reveal the Unduloid Geometry 53
 4.1 First Change of Variables: Landen’s Transformation 53
 4.2 Second Change of Variables: Elliptic Integral Recalls Nonlinear Pendulum Giving a Weighted Sum to an Angular Variable 56
 4.3 Relationship between the Variables \(u \) and \(\psi = s/a \) 56
 4.4 Prioritizing Symmetry 57
 4.5 Parameterization Matches that from Cartan Moving Frame 58
 4.6 Metric Tensor Components from the Elliptic Parameterization 59
5 Numerical Method to Solve for the Eigenvalues and Eigenfunctions 60
 5.1 Eigenvalues 60
 5.2 Eigenfunctions 62
6 Conclusions 63
References 64