GRASSMANNIAN SIGMA-MODELS

ARMEN SERGEEV

Communicated by Martin Schlichenmaier

Abstract

We study solutions of Grassmannian sigma-model both in finitedimensional and infinite-dimensional settings. Mathematically, such solutions are described by harmonic maps from the Riemann sphere $\mathbb{C P}^{1}$ or, more generally, compact Riemann surfaces to Grassmannians. We describe first how to construct harmonic maps from compact Riemann surfaces to the Grassmann manifold $\mathrm{G}_{r}\left(\mathbb{C}^{d}\right)$, using the twistor approach. Then we switch to the infinite-dimensional setting and consider harmonic maps from compact Riemann surfaces to the HilbertSchmidt Grassmannian $\mathrm{Gr}_{\mathrm{HS}}(H)$ of a complex Hilbert space H. Solutions of this infinite-dimensional sigma-model are, conjecturally, related to Yang-Mills fields on \mathbb{R}^{4}.

1. Introduction

In this paper we describe classical solutions of Grassmannian sigma-models in finite-dimensional and infinite-dimensional settings. The study of such solutions in the finite-dimensional case was initiated by physicists (cf. e.g., [4,8,13]). Mathematically, sigma-model solutions correspond to harmonic maps from compact Riemann surfaces to Grassmannians $\mathrm{G}_{r}\left(\mathbb{C}^{d}\right)$.
In the first part of this paper (Sections 2, 3 and 4) we explain how to construct such maps, using the twistor approach. The main idea of this approach, when applied to the construction of harmonic maps from a Riemann surface M to a given Riemannian manifold N, is to construct a certain twistor bundle $\pi: Z \rightarrow N$ over N, which has the following property. The twistor space Z is an almost complex manifold such that for any pseudoholomorphic map $\psi: M \rightarrow Z$ its projection $\varphi:=\pi \circ \psi$ to N is a harmonic map $\varphi: M \rightarrow N$. In our case $N=\mathrm{G}_{r}\left(\mathbb{C}^{d}\right)$ and the role of the twistor bundle over $\mathrm{G}_{r}\left(\mathbb{C}^{d}\right)$ is played by homogeneous flag bundles $\pi: \mathcal{F}_{\mathbf{r}}\left(\mathbb{C}^{d}\right) \rightarrow \mathrm{G}_{r}\left(\mathbb{C}^{d}\right)$. Using the twistor approach, one can try to reduce the original "real" problem of constructing harmonic maps of compact Riemann surfaces M to $\mathrm{G}_{r}\left(\mathbb{C}^{d}\right)$ to the "complex" problem of constructing pseudoholomorphic

