# MOTION OF CHARGED PARTICLES IN TWO-STEP NILPOTENT LIE GROUPS* 

OSAMU IKAWA<br>Department of General Education, Fukushima National College of Technology Iwaki, Fukushima, 970-8034 JAPAN


#### Abstract

We formulate the equation of motion of a charged particle in a Riemannian manifold with a closed two form. Since a two-step nilpotent Lie group has natural left-invariant closed two forms, it is natural to consider the motion of a charged particle in a simply connected two-step nilpotent Lie groups with a left invariant metric. We study the behavior of the motion of a charged particle in the above spaces.


## 1. Introduction

Let $\Omega$ be a closed two-form on a connected Riemannian manifold ( $M,\langle$,$\rangle ),$ where $\langle$,$\rangle is a Riemannian metric on M$. We denote by $\Lambda^{m}(M)$ the space of $m$ forms on $M$. We denote by $\mathfrak{l}(X): \Lambda^{\mathfrak{m}}(M) \rightarrow \Lambda^{\mathfrak{m}-1}(M)$ the interior product operator induced from a vector field $X$ on $M$, and by $\mathcal{L}: T(M) \rightarrow T^{*}(M)$, the Legendre transformation from the tangent bundle $T(M)$ over $M$ onto the cotangent bundle $T^{*}(M)$ over $M$, which is defined by

$$
\begin{equation*}
\mathcal{L}: \mathrm{T}(M) \rightarrow \mathrm{T}^{*}(M), \quad u \mapsto \mathcal{L}(u), \quad \mathcal{L}(u)(v)=\langle u, v\rangle, \quad u, v \in \mathrm{~T}(M) \tag{1}
\end{equation*}
$$

A curve $x(t)$ in $M$ is referred as a motion of a charged particle under electromagnetic field $\Omega$, if it satisfies the following second order differential equation

$$
\begin{equation*}
\nabla_{\dot{\chi}} \dot{\bar{x}}=-\mathcal{L}^{-1}(\mathfrak{l}(\dot{\mathrm{x}}) \Omega) \tag{2}
\end{equation*}
$$

where $\nabla$ is the Levi-Civita connection of $M$. Here $\nabla_{\dot{x} \dot{x}}$ means the acceleration of the charged particle. Since $\left.-\mathcal{L}^{-1}(\mathfrak{l} \dot{x}) \Omega\right)$ is perpendicular to the direction $\dot{x}$ of the movement, $-\mathcal{L}^{-1}(\mathfrak{l}(\dot{x}) \Omega)$ means the Lorentz force. The speed $|\dot{x}|$ is a conservative constant for a charged particle. When $\Omega=0$, then the motion of a

[^0]
[^0]:    *Reprinted from J. Geom. Symm. Phys. 20 (2010) 57-67.

