Seventeenth International Conference on Geometry, Integrability and Quantization June 5–10, 2015, Varna, Bulgaria Ivaïlo M. Mladenov, Guowu Meng and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2016, pp 344–359 doi: 10.7546/giq-17-2016-344-359

LORENTZIAN SUBMANIFOLDS IN SEMI-EUCLIDEAN SPACES WITH POINTWISE 1-TYPE GAUSS MAP

NURETTIN C. TURGAY

Istanbul Technical University, Department of Mathematics, 34469 Maslak Istanbul, Turkey

Abstract. In this work first, we survey the most recent classification results for submanifolds with pointwise 1-type Gauss map. Then, we study a class of hypersurfaces with vanishing Gauss-Kronecker curvature in terms of type of their Gauss map.

MSC: 53B25, 53C50

Keywords: finite type submanifolds, L_k operators, minimal surfaces, marginally trapped surfaces, pointwise 1-type Gauss map, rotational surfaces

1. Introduction

After the problem "To what extent does the type of the Gauss map of a submanifold of \mathbb{E}_r^m determine the submanifold?" was introduced by Chen and Piccinni in [10], submanifolds with pointwise 1-type Gauss map have been worked in many articles, [8–10]. We present a survey of recent results on this topic in Section 3.

Consider an oriented (semi-)Riemannian submanifold M of a (semi-)Euclidean space and its Gauss map G. By the definition, M is said to have pointwise 1-type Gauss map if the Laplacian of its Gauss map take the form

$$\Delta G = f(G+C) \tag{1}$$

for a smooth function f and constant vector C. More precisely, a pointwise 1-type Gauss map is called *of the first kind* if (1) is satisfied for C = 0, and *of the second kind* if $C \neq 0$. Moreover, if (1) is satisfied for a non-constant function f, then M is said to have *proper* pointwise 1-type Gauss map. Otherwise, G is said to be (global) 1-type, [8, 13].