Second International Conference on Geometry, Integrability and Quantization June 7–15, 2000, Varna, Bulgaria Ivaïlo M. Mladenov and Gregory L. Naber, Editors Coral Press, Sofia 2001, pp 171-180

SIGMA MODELS, MINIMAL SURFACES AND SOME RICCI FLAT PSEUDO-RIEMANNIAN GEOMETRIES

METIN GÜRSES

Department of Mathematics, Faculty of Science Bilkent University, 06533 Ankara, Turkey

Abstract. We consider the sigma models where the base metric is proportional to the metric of the configuration space. We show that the corresponding sigma model equation admits a Lax pair. We also show that this type of sigma models in two dimensions are intimately related to the minimal surfaces in a flat pseudo-Riemannian 3-space. We define two dimensional surfaces conformally related to the minimal surfaces in flat three dimensional geometries which enable us to give a construction of the metrics of some even dimensional Ricci flat (pseudo-) Riemannian geometries.

1. Introduction

Let M be a 2-dimensional manifold with local coordinates $x^{\mu} = (x, y)$ and $\Lambda^{\mu\nu}$ be the components of a tensor field in M. Let P be an 2×2 matrix with a nonvanishing constant determinant. We assume that P is a Hermitian $(P^{\dagger} = P)$ matrix. Then the field equations of the sigma-model we consider is given as follows

$$\frac{\partial}{\partial x^{\alpha}} \left(\Lambda^{\alpha\beta} P^{-1} \frac{\partial P}{\partial x^{\beta}} \right) = 0.$$
 (1.1)

The integrability of the above equation has been studied in [1] where the matrix function P and the tensor $\Lambda^{\alpha\beta}$ were considered independent. The sigma model equation given above is integrable provided Λ satisfies the conditions

$$\partial_{\alpha} \left(\frac{1}{\sigma} \Lambda^{\alpha\beta} \partial_{\beta} \sigma \right) = 0, \qquad \partial_{\alpha} \left(\frac{1}{\sigma} \Lambda^{\beta\alpha} \partial_{\beta} \phi \right) = 0, \qquad (1.2)$$